Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Опишите основные свойства прямых и итерационных методов решения уравнений.
Опишите основные свойства прямых и итерационных методов решения уравнений.
Методы численного решения системы (1) делятся на две группы: прямые методы («точные») и итерационные методы. Прямыми методами называются методы, позволяющие получить решение системы (1) за конечное число арифметических операций. К этим методам относятся метод Крамера, метод Гаусса, LU-метод и т.д. Итерационные методы (методы последовательных приближений) состоят в том, что решение системы (1) находится как предел последовательных приближений при , где n номер итерации. При использовании методов итерации обычно задается некоторое малое число e >0 и вычисления проводятся до тех пор, пока не будет выполнена оценка . К этим методам относятся метод Зейделя, Якоби, метод верхних релаксаций и т.д. Следует заметить, что реализация прямых методов на компьютере приводит к решению с погрешностью, т.к. все арифметические операции над переменными с плавающей точкой выполняются с округлением. В зависимости от свойств матрицы исходной системы эти погрешности могут достигать значительных величин.
5. Что понимают под сходимостью итерационной процедуры? Ответпоясните примерами.
Итерационный процесс - последовательное приближение и проверка условия достижения искомого результата. В итерационных алгоритмах необходимо обеспечить обязательное достижение условия выхода из цикла (сходимость итерационного процесса). В противном случае произойдет зацикливание алгоритма.
Проверкасходимости итерационного процесса выполняется по относительным приращениям обобщенных деформаций на данной итерации. Большее из двух относительных приращений обобщенных деформаций сравнивается с заданным критерием сходимости. В случае неудовлетворения заданному критерию итерационный цикл повторяется. В противном случае итерационный процесс заканчивается и найденные на последней итерации компоненты напряжений и жесткости сечений являются окончательными расчетными. [ 1 ] Критериемсходимости итерационного процесса является сравнение двух последующих величин сх и су. Пример в курсовой – сравнение abs(f)<0.00001
Что такое область сходимости применительно к итерационной процедуре?
Говорят, чтоитерационный процесс сходится, если при выполнении последовательных итераций получаются значения корней, все ближе и ближе приближающиеся к точному значению корня. В противном случае итерационныйпроцесссчитается расходящимся. (3) что можно получить путем замены: . следующим, 2-м, приближением будет и т.д., в качестве n -го приближения примем (4)
Если производная в некоторых точках по модулю меньше 1, а в других точках – больше 1, то ничего определенного о сходимости итерационного процесса сказать нельзя. Он может как сходиться, так и расходиться. Если итерационный процесс расходится, то причиной этого часто является неудачный выбор нулевого приближения. Так, на рис. 1 показано, что выбор нулевого приближения существенно влияет на сходимость итерационного процесса. Это напрямую связано с тем, находится ли нулевое приближение в области, где выполняются условия сходимости итерационного процесса. Рис. 1. Зависимость сходимости итерационного процесса от выбора нулевого приближения
Поясните, что такое скорость сходимости и как она связана с эффективностью метода.
Почему на практике часто применяют комбинированные алгоритмы, включающие в себя различные методы отыскания корней?
Опишите основные свойства прямых и итерационных методов решения уравнений.
Методы численного решения системы (1) делятся на две группы: прямые методы («точные») и итерационные методы. Прямыми методами называются методы, позволяющие получить решение системы (1) за конечное число арифметических операций. К этим методам относятся метод Крамера, метод Гаусса, LU-метод и т.д. Итерационные методы (методы последовательных приближений) состоят в том, что решение системы (1) находится как предел последовательных приближений при , где n номер итерации. При использовании методов итерации обычно задается некоторое малое число e >0 и вычисления проводятся до тех пор, пока не будет выполнена оценка . К этим методам относятся метод Зейделя, Якоби, метод верхних релаксаций и т.д. Следует заметить, что реализация прямых методов на компьютере приводит к решению с погрешностью, т.к. все арифметические операции над переменными с плавающей точкой выполняются с округлением. В зависимости от свойств матрицы исходной системы эти погрешности могут достигать значительных величин.
5. Что понимают под сходимостью итерационной процедуры? Ответпоясните примерами.
Итерационный процесс - последовательное приближение и проверка условия достижения искомого результата. В итерационных алгоритмах необходимо обеспечить обязательное достижение условия выхода из цикла (сходимость итерационного процесса). В противном случае произойдет зацикливание алгоритма.
Проверкасходимости итерационного процесса выполняется по относительным приращениям обобщенных деформаций на данной итерации. Большее из двух относительных приращений обобщенных деформаций сравнивается с заданным критерием сходимости. В случае неудовлетворения заданному критерию итерационный цикл повторяется. В противном случае итерационный процесс заканчивается и найденные на последней итерации компоненты напряжений и жесткости сечений являются окончательными расчетными. [ 1 ] Критериемсходимости итерационного процесса является сравнение двух последующих величин сх и су. Пример в курсовой – сравнение abs(f)<0.00001
|
||||
Последнее изменение этой страницы: 2016-04-23; просмотров: 1518; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.133.108.172 (0.006 с.) |