Пирометры полного излучения, или радиационные пирометры. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Пирометры полного излучения, или радиационные пирометры.



Эти пирометры основаны на зависимости от температуры инте­гральной мощности излучения АЧТ во всем диапазоне длин волн, определяемой законом Стефана - Больцмана:

Для реального тела эта зависимость определяется выражением

,

где — коэффициент теплового излучения (коэффици­ент излучательной способности), зависящий от материала излучателя и от состояния и температуры его поверхности. Пирометр, гра­дуированный по излучению АЧТ, при измерении на реальном объекте покажет так называемую радиационную температуру Тp, значение которой всегда меньше действительной температуры объекта Т. Радиационной температурой объекта называется та­кая температура АЧТ, при которой его полная мощность излучения

(плотность излучении во всем диапазоне длин волн - от λ1=0 до λ2∞) равна полной мощности излучения рассматривае­мого объекта при температуре Т.

Связь между Тр и Топределяется из равенства

откуда

Пирометры полного излучения применяются для измерения в диапазоне температур от -50 до +3500°С. Наиболее целесо­образно использовать такие пирометры для измерения темпера­туры объектов, излучательные свойства которых мало отлича­ются от свойств АЧТ.

При­емники излучения в пирометрах полного излучения должны иметь спектральную характеристику, близкую к характеристике АЧТ. Для повышения точности пирометров полного излучения в корпусе телескопа устанавливается образцовый источник излучения в виде АЧТ, температура которого поддерживается посто­янной. При помощи дифференциальной измерительной цепи сравниваются мощности излучения измеряемого объекта и АЧТ, потоки излучения которых с помощью вращающегося или колеблющегося зеркала попеременно подаются на приемник.

Разработаны различные оптические устройства, расширяю­щие области применения пирометров. Например, изготовляются пирометры с волоконной оптикой для измерения температуры в диапазоне 400-З000 °С. Используются световоды длиной до10 м. Такие пирометры обеспечивают измерение температур объ­ектов диаметром от «1 мм, а также температур в герметичных объемах. Такой канал передачи не чувствителен к помехам и из­менениям параметров промежуточной среды.

 


 

Яркостные пирометры.

Основаны на использова­нии зависимости от температуры мощности излучения в ограни­ченном диапазоне длин волн. Рабочий: диапазон измерений таких пирометров от –100 до +6000°С. Основная погрешность изме­рения для различных типов пирометров лежит в пределах 0,25— 2,5%, быстродействие 0,001 - 2,5 с.

Разновидностью пирометра частичного излучения является монохроматический яркостный пирометр, основанный на сравне­нии энергетической яркости объекта исследования с энергетиче­ской яркостью образцового излучателя в узком участке спектра излучения.

Вследствие неполноты излучения реальных тел яркостные пи­рометры измеряют не действительную температуру тела Т,а так называемую яркостную температуру Тя.Соотношение между дей­ствительной и яркостной температурами, как следует из законов излучения, определяется выражением

где — коэффициент теплового излучения для длины волны . Большинство яркостных пирометров, работающих в видимой области спектра, снабжаются красным светофильтром, обеспечивающим эффективную длину волны. В зависимости от материала излучателя и состояния его по­верхности значения коэффициента теплового излучения ко­леблются в широких пределах: 0< ≤1. Сравнение энергетических яркостей объекта исследования и образцового излучателя может осуществляться автоматически или визуально человеком. Широкое применение для изме­рения температур в диапазоне 300—6000°С получили визуальные пирометры с исчезающей нитью. В таком пирометре изображение объекта путем перемеще­ния объектива совмещается с пло­скостью нити лампы накаливания. Наблюдая изображения объекта и нити через светофильтр и окуляр,наблюдатель меняет ток накала нити лампы до тех пор, пока середина на­каленной нити не исчезнет на фоне изображения объекта. Это свидетельствует о ра­венстве энергетических яркостей излучающего объекта и нити в области спектра, определяемого характеристикой пропускания красного фильтра и спектральной характеристикой чувстви­тельности глаза наблюдателя , максимум которой для нор­мальных глаз соответствует длине волны мкм. Зависимость между током лампы и яркостной температурой определяется путем градуировки термометра по температуре АЧТ. Шкала такого пирометра имеет резко нелинейную харак­теристику, поскольку яркость нити примерно пропорциональна пятой степени тока накала нити. Равномерную шкалу можно по­лучить, если ток накала нити и, следовательно, ее температуру поддерживать постоянными, а выравнивание яркости нити и объекта осуществлять перемещением нейтрального поглотителя с переменной плотностью, устанавливаемого между объективом и температурной лампой. Яркостная температура в этом случае определяется по шкале отсчетного устройства, регистрирующего положение клина. Для увеличения верхнего предела измерения пирометров при­меняются нейтральные поглотители с известным коэффициентом пропускания ,который определяется из выражения

где — длина волны; С2 — вторая постоянная излучения; Т1- температура АЧТ, измеренная пирометром без поглотителя; Т2 - температура АЧТ, измеренная при наличии поглотителя.


30 Цветовые пирометры.

Пирометры спектрального отношения, или цветовые пиро­метры. Они показывают так называемую цветовую температуру тела Тц - условную температуру, при которой АЧТ имеет такое же относительное спектральное распределение энергетической яр­кости, что и исследуемое реальное тело с действительной темпе­ратурой Т.

Показания пирометра спектрального отношения соответствуют действительной температуре, если объект является абсолютно черным или серым телом, т. е. таким телом, у которого излуча-тельная способность для всех длин волн одинакова.

Если зависит от длины волны, то связь между действительной и цветовой температурой определяется выражением:

(12-3)

Где — коэффициенты излучательной способности тела со­ответственно на длинах волн

Из выражения (12-3) следует, что пирометры спектрального отношения, в отличие от пирометров полного или частичного из­лучения, показывают действительную температуру серых тел и их показания не зависят от излучательной способности тела до тех пор, пока .

Для многих тел не остается постоянным с изменением длины волны. У металлов уменьшается сростом длины волны, у неметаллических тел в ряде случаев , наоборот, увеличивается. Поскольку при величина , то измеренная цветовая температура, как следует из выражения (12-3), может быть больше, меньше действительной температуры или равна ей. Из этого же выражения следует, что цветовая температура Тцтела тем ближе к действительной температуре, чем больше раз­ность .

В целом погрешности пирометров спектрального отношения меньше, чем у пирометров полного или частичного излучения. Их показания принципиально не зависят от расстояния до объ­екта исследования, а также от поглощения излучения в промежу­точной среде между объектом и пирометром, если .

В большинстве серийно выпускаемых пирометров модуляция излучения осуществляется при помощи механических модулято­ров, приводимых в движение синхронными микродвигателями. В качестве приемников излучения применяются термобатареи (в пирометрах полного излучения), фотодиоды, фоторезисторы или пироэлектрические приемники. В некоторых приборах при­емники излучения термостатированы. Большинство пирометров имеют стандартный выходной сигнал постоянного тока 0—5 мА или 4—20 мА и постоянного напряжения 0—100 мВ или 0—10 В.

 

 



Поделиться:


Последнее изменение этой страницы: 2016-04-21; просмотров: 340; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.2.184 (0.01 с.)