Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву
Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Канальный ресурс и его характеристикиСодержание книги
Поиск на нашем сайте На физическом уровне (на радиоинтерфейсе) в E-UTRAN используют технологию OFDM с модуляцией 4-ФМ, 16-КАМ и 64-КАМ. При этом число поднесущих частот в рабочей полосе 20 МГц составляет 1200. Для взаимной синхронизации E-UTRAN и UTRAN используют тактирование с длительностью временной единицы Ts = 1/(15000×2048)c. Передача по радиоканалу идет кадрами длиной 10 мс, что составляет 307200 Ts. Кадр состоит из 20 временных слотов длиной 15360×Ts = 0,5мс, пронумерованных от 0 до 19. Два последовательных слота составляют 1 субкадр – всего 10 субкадров, от 0 до 9 рис.2.8. Различают 2 структуры кадров: кадры типа 1 при работе с частотным дуплексом (FDD) и кадры типа 2 при работе с временным дуплексом (TDD). На рис. 2.9. показаны структуры кадров с FDD и TDD.
При частотном дуплексе в каждом субкадре идет одновременная передача вверх (UL) и вниз (DL) в разных частотных полосах. При временном дуплексе в некоторых субкадрах идет передача вниз (D), в других вверх (U). Кроме того, есть специальные (переходные) субкадры (S),состоящие из трех полей: DwPTS – поля передачи вниз, UpPTS – поля передачи вверх и защитного интервала (GP). В сетях LTE согласно спецификациям возможны 7 конфигураций кадров при временном дуплексе (рис.2.10).
Так как число символов в поле вниз DwPTS специального субкадра гораздо больше количества символов в поле вверх UpPTS, то при оценке относительного времени передачи DL:UL на рис. 2.10 специальные субкадры относим к субкадрам передачи вниз. В сетях LTE с временным дуплексом суммарная пропускная способность в рабочей полосе делится между потоками вниз и вверх в соответствии со сценариями на рис. 2.10. Это позволяет оператору менять конфигурацию кадра в зависимости от реальной картины трафика, который, как правило, асимметричен. Для сетей LTE с временным дуплексом выделены полосы частот в диапазоне от 1900 до 3800 МГц [1, гл. 3.2], что предполагает использование этого варианта дуплекса в микро, пико и фемтосотах. При расстоянии между поднесущими ∆F = 15 кГц длина OFDM-символа составляет 1/∆F ≈ 66,7 мкс. В каждой половине субкадра (слоте длиной 0,5мс) передают 6 или 7 OFDM-символов в зависимости от длительности циклического префикса СР (cyclic prefix) ‒ активной паузы между символами. Длительность циклического префикса TCP составляет 160Тs ≈5,2 мкс перед первым символом и 144Тs ≈4,7мкс перед остальными символами. Возможен вариант использования расширенного СР длительностью 512 Тs ≈16,7мкс. В этом случае в одном субкадре размещают 6-OFDM символов (рис.2.11). Весь канальный ресурс разделяют на ресурсные блоки (РБ). Ресурсный блок состоит из 12 расположенных рядом поднесущих, занимающих полосу 180 кГц и одного временного слота (7 или 6 OFDM-символов на интервале 0,5 мс). Каждый OFDM-символ является ресурсным элементом (РЭ); его характеризуют 2 параметра {k,l}, где k определяет номер поднесущей, а l ‒ номер символа в ресурсном блоке. При передаче вниз, от eNB к UE, в каждом блоке из 12×7 = 84 РЭ часть ресурсных элементов используют для передачи опорных (reference) символов (рис.2.12). Выделяемый канальный ресурс определяют числом ресурсных блоков или групп ресурсных блоков.
Реальная скорость передачи данных уменьшается из-за передачи опорных символов и управляющих каналов. Опорные символы (CRS – Cell-specific Reference Signals) используют для организации когерентной демодуляции и оценки каналов. При работе нескольких передающих антенн каждой антенне выделены определенные РЭ для передачи опорных символов. Расположение CRS в ресурсном блоке при работе eNB с 4 антеннами показано на рис.2.13. В LTE передающим антеннам присваивают номера логических антенных портов. Символы, помеченные R0, передает порт 0, символы R1 – порт 1, R2 – порт 2, R3 – порт 3. Снижение пропускной способности ресурсного блока (в процентах) из-за передачи опорных символов приведено в табл. 2.1.
Рис.2.12. Структура ресурсного блока при передаче вниз
Рис.2.13. Позиционирование опорных символов в ресурсном блоке при передаче вниз
Таблица 2.1
При выделении канального ресурса вверх используют те же понятия ресурсного блока (12 поднесущих общей полосой 180 кГц в слоте), и субкадров длительностью 1 мс с 7 или 6 OFDM-символами в каждом слоте. Пример распределения канального ресурса между разными абонентами (User) проиллюстрирован рис.2.14.
При передаче вверх используют модифицированную технологию OFDM, а фактически организуют передачу широкополосного сигнала на одной несущей. Цель данного метода состоит в том, чтобы уменьшить пик-фактор передаваемого сигнала, поскольку высокий пик-фактор является существенным недостатком технологии OFDM. С этой целью до формирования сигнала OFDM осуществляют прямое быстрое (дискретное) преобразование Фурье передаваемого сигнала (БПФ), после которого переходят к OFDM (рис. 2.15). Такая технология получила название БПФ-OFDM или SC-FDMA (Single Carrier-Frequency Division Multiple Access). Рассмотрим последовательность операций при передаче.
Рис.2.15. Генерация сигнала БПФ-OFDM Массив символов {
Полученные комплексные числа zk представляют собой MSC дискретных аналоговых отсчетов спектра одного сегмента передаваемого массива.{ a0…aM-1 }. Их размещают на поднесущих соответствующего OFDM-символа. После выполнения ОБПФ во время передачи данного OFDM-символа в канале фактически передают сигнал, представляющий собой последовательность символов данного сегмента. В результате пик-фактор OFDM-сигнала соответствует пик-фактору исходной последовательности. При приеме сигнала SC-FDMA над ним производят операции, обратные тем, что были при передаче (рис. 2.16.). Для минимизации влияния на качество приема межсимвольной интерференции при передаче между символами после выполнения ОБПФ вставляют СР, а в приемниках SC-FDMA после блока ОБПФ используют эквалайзеры.
Рис.2.16. Прием сигнала DFTS-OFDM В E-UTRA специфицированы 6 полос частот для развертываемых сетей (табл.2.2). В ней также приведено максимальное число ресурсных блоков в одном временном интервале при передаче вниз и полоса частот, вырезаемая приемником UE для обработки принятого сигнала (measurement bandwidth в [10]). Таблица 2.2
|
|||||||||||||||||||||||||||||||||||
|
Последнее изменение этой страницы: 2016-04-19; просмотров: 945; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 216.73.216.214 (0.01 с.) |