Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Структурная самоорганизация Вселенной

Поиск

Предполагается, что в расширяющейся Вселенной возникают и развиваются случайные уплотнения вещества. Силы тяготения внутри уплотнения проявляют себя заметнее, чем вне их. Поэтому, несмотря на общее расширение Вселенной, вещество в уплотнениях притормаживается, и его плотность постепенно нарастает. Появление таких уплотнений и стало началом рождения крупномасштабных структур во Вселенной. Согласно расчетам, из этих сгущений должны были возникать плоские образования, напоминающие блины.

Сжатие водородно-гелиевой плазмы в «блины» неизбежно приводило к значительному повышению их температуры. В конечном счете сжатие «блина» порождало его неустойчивость и он распадался на более мелкие подсистемы, которые, возможно, стали зародышами галактик. Подсистемы, в свою очередь, достигали состояния неустойчивости и распадались на более мелкие уплотнения, ставшие зародышами звезд первого поколения.

Образование разномасштабных структур во Вселенной открыло возможность для новых усложнений вещества. Важнейшим узловым моментом стало образование всей совокупности элементов таблицы Менделеева. Они появились в звездах в ходе процессов звездного нуклеосинтеза.

Согласно современным представлениям, присутствующие в межзвездной среде тяжелые элементы изготовлены в звездах типа красных гигантов. Желтые карлики типа нашего Солнца поддерживают свое состояние главным образом в результате термоядерной реакции, превращающей водород в гелий. Красные гиганты обладают массой, в несколько раз превышающей солнечную, водород в них выгорает очень быстро. В центре, где сосредоточен гелий, их температура достигает нескольких сотен миллионов градусов, что оказывается достаточным для протекания реакций углеродного цикла - слияния ядер гелия в углерод. Ядро углерода, в свою очередь, может присоединить еще одно ядро гелия и образовать ядро кислорода, неона и т.д. вплоть до кремния. Выгорающее ядро звезды сжимается и температура в нем поднимается до 3 - 10 млрд. градусов. В таких условиях реакции объединения продолжаются вплоть до образования ядер железа.

Ядро железа - самое устойчивое во всей последовательности химических элементов. Здесь проходит граница, выше которой нуклеосинтез перестает быть источником выделяющейся энергии (как это было в предыдущих реакциях) и протекание реакций с образованием еще более тяжелых ядер требует энергетических затрат.

Разработана теория образования в недрах красных гигантов элементов от железа до висмута - в процессах медленного захвата нейтронов. Образование же наиболее тяжелых ядер, замыкающих таблицу Менделеева, предположительно происходило в оболочках взрывающихся звезд или при прохождении сильной ударной волны, созданной взрывом сверхновой звезды, через гелиевую оболочку этой звезды с массой около 25 солнечных масс.

Красные гиганты быстро расходуют запас гелия, у них короткий жизненный цикл порядка десятка миллионов лет. За время своего активного существования красный гигант отдает

в межзвездную среду ежегодно не менее 10-4 - 10-5 масс Солнца, а в конце существования он со взрывом сбрасывает внешнюю оболочку вместе с накопившимися в ней «шлаками» - химическими элементами, результатами деятельности циклов нуклеосинтеза. Поэтому межзвездная среда сравнительно быстро обретает все известные на сегодняшний день химические элементы тяжелее гелия. Звезды следующих поколений, в том числе и Солнце, с самого начала содержат в своем составе и в составе окружающего их газопылевого облака примесь тяжелых элементов.

Появление во Вселенной всей гаммы химических элементов открыло новый этап в развитии вещества и в формировании его структур. Так, в местах нахождения разнообразных химических элементов протекают процессы их объединения в молекулы, сложность которых может нарастать до очень высоких уровней. Причину, заставляющую атомы объединяться в молекулы, наука знает достаточно хорошо. В основе этих процессов - химические силы, за которыми скрывается одна из фундаментальных сил природы - электромагнитное взаимодействие. Процессы соединения атомов в молекулы широко распространены во Вселенной. В межзвездной среде, где концентрация вещества ничтожно мала, тем не менее обнаруживаются молекулы водорода. Там же встречаются мельчайшие пылинки, в их основе - кристаллики льда или углерода с примесью гидратов разных соединений. Молекулярный водород вместе с гелием образует газовые межзвездные облака. Скопление газов вместе с пылинками формирует газо-пылевые облака. Но самое интересное, с чем столкнулись наблюдатели, - это неожиданно большое присутствие в космосе разнообразных органических молекул, вплоть до таких сложных, как молекулы некоторых аминокислот. В межзвездных облаках насчитали более 50 видов органических молекул. Еще удивительнее, что органические молекулы находят во внешних оболочках некоторых не очень горячих звезд и в образованиях, температура которых незначительно отличается от абсолютного нуля. Так что синтез молекул, в том числе и органических, - распространенное и вполне обыденное явление в космосе. Правда, наука пока не может с уверенностью назвать конкретные пути протекания такого синтеза.

В связи с этим невольно возникает вопрос, способно ли усложнение вещества достигнуть самых высоких уровней вне планет, в межзвездной среде или в оболочках не очень горячих звезд? Иначе говоря, возможна ли там жизнь? Эта тема неоднократно обыгрывалась в научно-фантастических произведениях, но современная наука не позволяет дать ни положительного, Ни отрицательного ответа на этот вопрос. Пока мы знаем только один вариант жизни в Космосе - на Земле.

Наличие тяжелых химических элементов, а также молекул и их соединений обеспечивает также возможность образования около некоторых звезд второго поколения планетных систем типа Солнечной. В таких системах становится возможным протекание геологической и химической эволюции.


ОБРАЗОВАНИЕ СОЛНЕЧНОЙ СИСТЕМЫ


Как и в случае со Вселенной, современное естествознание не дает точного описания этого процесса. Но современная наука решительно отвергает допущение о случайном образовании и исключительном характере образования планетных систем. Современная астрономия дает серьезные аргументы в пользу наличия планетных систем у многих звезд. Так, примерно у 10% звезд, находящихся в окрестностях Солнца, обнаружено избыточное инфракрасное излучение. Очевидно, это связано с присутствием вокруг таких звезд пылевых дисков, которые, возможно, являются начальным этапом формирования планетных систем.

На протяжении нескольких лет канадскими учеными измерялись очень слабые периодические изменения скорости движения шестнадцати звезд. Такие изменения возникают из-за возмущения движения звезды под действием гравитационно связанного с ней тела, размеры которого много меньше, чем у самой звезды. Обработка данных показала, что у десяти из шестнадцати звезд изменения скорости указывают на наличие около них планетных спутников, масса которых превышает массу Юпитера. Можно предполагать, что существование крупного спутника типа Юпитера, по аналогии с Солнечной системой, указывает на большую вероятность существования и семейства более мелких планет. Наиболее вероятное существование планетных систем отмечено у эпсилона Эридана и гаммы Цефея.

Но следует отметить, что одиночные звезды типа Солнца явление не столь уж частое, обычно они составляют кратные системы. Нет уверенности, что планетные системы могут образовываться в таких звездных системах, а если они в них возникают, то условия на таких планетах могут оказаться нестабильными, что не способствует появлению жизни.

О механизме образования планет, в частности, в Солнечной системе, также нет общепризнанных заключений. Солнечная система образовалась примерно 5 млрд. лет назад, причем Солнце - звезда второго (или еще более позднего) поколения. Так что Солнечная система возникла на продуктах жизнедеятельности звезд предыдущего поколения, скапливавшихся в газо-пылевых облаках.

Вообще, сегодня мы больше знаем о происхождении и эволюции звезд, чем о происхождении собственной планетной системы, что не удивительно: звезд много, а известная нам планетная система - одна. Накопление информации о Солнечной системе еще далеко от завершения. Сегодня мы видим ее совершенно иначе, чем даже тридцать лет назад.

И нет гарантии, что завтра не появятся какие-то новые факты, которые перевернут все наши представления о процессе ее образования.

Сегодня существует довольно много гипотез образования Солнечной системы. В качестве примера изложим гипотезу шведских астрономов X. Альвена и Г. Аррениуса. Они исходили из предположения, что в природе существует единый механизм планетообразования, действие которого проявляется и в случае образования планет около звезды, и в случае появления планет-спутников около планеты. Для объяснения этого они привлекают совокупность различных сил - гравитацию, магнитогидродинамику, электромагнетизм, плазменные процессы.

К моменту, когда начали образовываться планеты, центральное тело системы уже существовало. Чтобы образовать планетную систему, центральное тело должно обладать магнитным полем, уровень которого превышает определенное критическое значение, а пространство в его окрестностях должно быть заполнено разреженной плазмой. Без этого процесс планетообразования невозможен.

Солнце имеет магнитное поле. Источником же плазмы служила корона молодого Солнца. Сегодня она стала меньше. Но даже сейчас планеты земной группы (Меркурий, Венера, Земля, Марс) практически погружены в разреженную атмосферу Солнца, а солнечный ветер доносит ее частицы и к более далеким планетам. Так что, возможно, корона молодого Солнца распространялась до современной орбиты Плутона.

Альвен и Аррениус отказались от традиционного допущения об образовании Солнца и планет из одного массива вещества, в одном нераздельном процессе. Они считают, что сначала из газо-пылевого облака возникает первичное тело, затем к нему извне поступает материал для образования вторичных тел. Мощное гравитационное воздействие центрального тела притягивает поток газовых и пылевых частиц, пронизывающих пространство, которому предстоит стать областью образования вторичных тел.

Для такого утверждения есть основания. Были подведены итоги многолетнего изучения изотопного состава вещества метеоритов. Солнца, Земли. Обнаружены отклонения в изотопном составе ряда элементов, содержащихся в метеоритах и земных породах, от изотопного состава тех же элементов на Солнце. Это говорит о различном происхождении этих элементов. Отсюда следует, что основная масса вещества Солнечной системы поступила из одного газо-пылевого облака и из него образовалось Солнце. Значительно меньшая часть вещества с другим изотопным составом поступила из другого газопылевого облака, и она послужила материалом для формирования метеоритов и частично планет. Смешение двух газопылевых облаков произошло примерно 4,5 млрд. лет назад, что и положило начало образованию Солнечной системы.

Молодое Солнце, предположительно обладавшее значительным магнитным моментом, имело размеры, превышавшие нынешние, но не доходившие до орбиты Меркурия. Его окружала гигантская сверхкорона, представлявшая собой разреженную замагниченную плазму. Как и в наши дни, с поверхности Солнца вырывались протуберанцы, но выбросы тех лет имели протяженность в сотни миллионов километров и достигали орбиты современного Плутона. Токи в них оценивались в сотни миллионов ампер и больше. Это способствовало стягиванию плазмы в узкие каналы. В них возникали разрывы, пробои, откуда разбегались мощные ударные волны, уплотнявшие плазму на пути их следования. Плазма сверхкороны быстро становилась неоднородной и неравномерной. Поступавшие из внешнего резервуара нейтральные частицы вещества под действием гравитации падали к центральному телу. Но в короне они ионизировались, и в зависимости от химического состава тормозились на разных расстояниях от центрального тела, то есть с самого начала имела место дифференциация допланетного облака по химическому и весовому составу. В конечном счете выделилось три-четыре концентрических области, плотности частиц в которых примерно на 7 порядков превышали их плотности в промежутках. Это объясняет тот факт, что вблизи Солнца располагаются планеты, которые при относительно малых размерах имеют высокую плотность (от 3 до

5,5 г/см3), а планеты-гиганты имеют намного меньшие плотности (1-2 г/см3).

Существование критической скорости, с достижением которой нейтральная частица, движущаяся ускоренно в разреженной плазме, скачком ионизируется, подтверждается лабораторными экспериментами. Оценочные расчеты показывают, что подобный механизм способен обеспечить накопление необходимого для образования планет вещества за сравнительно короткое время порядка ста миллионов лет.

Сверхкорона, по мере накопления в ней выпадающего вещества, начинает отставать в своем вращении от вращения центрального тела. Стремление выравнять угловые скорости тела и короны заставляет плазму вращаться быстрее, а центральное тело замедлять свое вращение. Ускорение плазмы увеличивает центробежные силы, оттесняя ее от звезды. Между центральным телом и плазмой образуется область очень низкой плотности вещества. Создается благоприятная обстановка для конденсации нелетучих веществ путем их выпадения из плазмы в виде отдельных зерен. Достигнув определенной массы, зерна получают от плазмы импульс и далее движутся по кеплеровской орбите, унося с собой часть момента количества движения в Солнечной системе: на долю планет, суммарная масса которых составляет только 0,1% от массы всей системы, приходится 99% суммарного момента количества движения.

Выпавшие зерна, захватив часть момента количества движения, следуют по пересекающимся эллиптическим орбитам. Множественные соударения между ними собирают эти зерна в большие группы и превращают их орбиты в почти круговые, лежащие в плоскости эклиптики. В конце концов они собираются в струйный поток, имеющий форму тороида (кольца). Этот струйный поток захватывает все частицы, которые с ним сталкиваются, и уравнивает их скорости со своей. Затем эти зерна слипаются в зародышевые ядра, к которым продолжают прилипать частицы, и они постепенно разрастаются до крупных тел - планетезималий. Их объединение образует планеты. А как только планетные тела оформляются настолько, что возле них появляется достаточно сильное собственное магнитное поле, начинается процесс образования спутников, в миниатюре повторяющий то, что произошло при образовании самих планет около Солнца.

Так, в этой теории, пояс астероидов - это струйный поток, в котором из-за нехватки выпавшего вещества процесс плане-тообразования прервался на стадии планетезималий. Кольца у крупных планет - это остаточные струйные потоки, оказавшиеся слишком близко к первичному телу и попавшие внутрь так называемого предела Роша, где гравитационные силы «хозяина» так велики, что не позволяют образоваться устойчивому вторичному телу.

Метеориты и кометы, согласно модели, формировались на окраине Солнечной системы, за орбитой Плутона. В отдаленных от Солнца областях существовала слабая плазма, в ней механизм выпадения вещества еще работал, но струйные потоки, в которых рождаются планеты, образовываться не могли. Слипание выпавших частиц привело в этих областях к единственно возможному результату - к образованию кометных тел.

Сегодня есть уникальные сведения, полученные «Вояджерами» о планетных системах Юпитера, Сатурна, Урана. Можно уверенно говорить о наличии общих характерных особенностей у них и у Солнечной системы как целого.

1. Одинаковая закономерность в распределении вещества по химическому составу: максимум концентрации летучих веществ (водород, гелий) всегда приходится на первичное тело и на периферийную часть системы. На некотором удалении от центрального тела располагается минимум летучих веществ. В Солнечной системе этот минимум заполнен самыми плотными планетами земной группы.

2. Во всех случаях на долю первичного тела приходится более 98% общей массы системы.

3. Имеются наглядные признаки, указывающие на повсеместное образование планетных тел путем слипания частиц (аккреция) во все более крупные тела, вплоть до окончательного оформления планеты (спутника).

Конечно, это только гипотеза, и она требует дальнейшей разработки. Так же пока не имеет убедительных доказательств предположение, что образование планетных систем является закономерным процессом для Вселенной. Но косвенные данные позволяют утверждать, что по крайней мере в определенной части нашей галактики планетные системы существуют в заметном количестве. Так, И.С. Шкловский обратил внимание на то, что все горячие звезды, температура поверхности которых превышает 7000 К, имеют высокие скорости вращения. По мере перехода ко все более холодным звездам на определенном температурном рубеже возникает внезапный резкий спад скорости вращения. Звезды, входящие в класс желтых карликов (типа Солнца), температура поверхности у которых порядка 6000 К, имеют аномально низкие скорости вращения, почти равные нулю. Скорость вращения Солнца - 2 км/с. Низкие скорости вращения могут быть результатом передачи 99% первоначального момента количества движения в протопланетное облако. Если это предположение верно, то наука получит точный адрес для поиска планетных систем.

План семинарского занятия (2 часа)

1. Рождение Вселенной. Роль вакуума в этом процессе.

2. Ранний этап эволюции Вселенной.

3. Появление во Вселенной структурных образований разных уровней.

4. Образование Солнечной системы.

Темы докладов и рефератов

1. Типы звезд.

2. Рождение и эволюция звезд.

3. Проблема жизни в космосе и ее отражение в научно-фантастической литературе.

ЛИТЕРАТУРА

1. Вайнберг С. Первые три минуты. М., 1981.

2. Воронцов-Вельяминов Б.А. Очерки о Вселенной. М., 1980.

3. Гивишвши Г.В. Есть ли у естествознания альтернатива богу//Вопросы философии. 1995. №2.

4.Девис П. Суперсила. М., 1989.

5. Ефремов 10.Н. В глубины Вселенной. М., 1984.

6. Зигель Ф.Ю. Неисчерпаемость бесконечности. М., 1984.

7. Новиков И.Д. Куда течет река времени? М., 1990.

8. Новиков И.Д. Черные дыры и Вселенная. М., 1985.

9. Новиков И.Д. Эволюция Вселенной, 1990.

10. Ровинский Р.Е. Развивающаяся Вселенная. М., 1996.

11. Философские проблемы естествознания. М., 1985.




Поделиться:


Последнее изменение этой страницы: 2016-04-19; просмотров: 773; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.138.113.44 (0.011 с.)