Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Источники вторичного электропитания РЭА.Содержание книги
Поиск на нашем сайте
Источники вторичного электропитания (ИВЭП) – это преобразователи электрической энергии, получающие ее от источников первичного напряжения – сетей переменного или постоянного тока, гальванических элементов, солнечных батарей. Эти устройства преобразуют подводимую энергию по роду тока, значениям тока и напряжения, при необходимости регулируя или стабилизируя их. Общепринято ИВЭП называть источниками питания. Любая электронная схема – от простых схем на транзисторах до сложнейших микропроцессорных систем требует для своей работы одного или нескольких стабильных источников питания постоянного тока. Простые нерегулируемые источники питания типа трансформатор – мостовой выпрямитель – фильтр не могут обеспечить необходимой стабильности напряжения. Для питания аппаратуры используют источники, в состав которых входят, кроме указанных перечисленных элементов, стабилизаторы напряжения. Стабилизаторы строятся на дискретных элементах или на ИМС. Рис.17.1. Структурные схемы источников питания без преобразования (а) и с преобразованием (б) Источник питания без преобразования (рис. 17.1, а) содержит каскадно-соединенные трансформатор (Т), выпрямитель (В), сглаживающий фильтр (Ф) и стабилизатор (С). Трансформатор предназначен для гальванической развязки питающей сети и нагрузки и изменения уровня переменного напряжения. Обычно трансформатор понижает сетевое напряжение. Выпрямитель преобразует переменное напряжение в пульсирующее постоянное напряжение. Сглаживающий фильтр уменьшает пульсации напряжения на выходе выпрямителя. Основная роль трансформатора также состоит в гальванической развязке сети и нагрузки. Инвертор, трансформатор и выпрямитель В2 образуют конвертор – устройство для изменения уровня постоянного напряжения. К недостаткам источников с преобразованием можно отнести генерацию импульсных помех, которые могут влиять на электронные схемы. Тщательное экранирование и фильтрация, правильное заземление позволяют уменьшить помехи до приемлемого уровня. Вторым недостатком является гальваническая связь выпрямителя, фильтра и инвертора с сетевым напряжением. Источники питания характеризуются рядом параметров:1. Номинальные уровни входного U ВХ НОМ и выходного U ВЫХ НОМ напряжений. В зависимости от формы эти напряжения являются либо действующими (U НОМ =U), либо постоянными (U НОМ =U СР). 2. Предельные отклонения входного и выходного напряжений, а также токов нагрузки, при которых сохраняется заданная степень стабилизации выходного напряжения, U ВХ МАКС – U ВХ МИН; U ВЫХ МАКС – U ВЫХ МИН; I Н МАКС – I Н МИН,
3. Выходное сопротивление, характеризующее изменение выходного напряжения при колебаниях тока нагрузки, но при постоянном входном напряжении r ВЫХ = ΔU ВЫХ / ΔI Н .т 4. КПД, равный отношению мощности, выделяемой на нагрузке (в номинальном режиме), к мощности, потребляемой от источника входного напряжения: η = Р ВЫХ / Р ВХ. 5. Предельный уровень пульсаций выходного напряжения U ПУЛЬСВЫХ. Иногда эта величина задается в виде коэффициента пульсаций ε = U ПУЛЬС ВЫХ / U ВЫХ НОМ. Дифференциальные УПТ. В настоящее время входные цепи операционных усилителей в подавляющем большинстве выполняются по схеме дифференциальных усилителей. По принципу построения это балансные (мостовые) усилительные каскады параллельного типа. Они обладают высокой стабильностью параметров при воздействии различных дестабилизирующих факторов, большим коэффициентом усиления дифференциальных сигналов и высокой степенью подавления синфазных помех. Дифференциальный усилитель – это широко известная схема, используемая для усиления разности двух напряжений. В идеальном случае выходной сигнал не зависит от уровня каждого из сигналов, а определяется только их разностью. Когда уровни сигналов на обоих входах изменяются одинаково, то такое изменение сигнала называют синфазным. Дифференциальный или разностный сигнал называют еще полезным. Хороший дифференциальный усилитель обладает высоким коэффициентом ослабления (подавления) синфазного сигнала (К ОСС), который представляет собой отношение выходного полезного сигнала к выходному синфазному сигналу. Дифференциальные усилители используют в тех случаях, когда слабые сигналы можно потерять на фоне шумов. Примерами таких сигналов являются цифровые сигналы, передаваемые по длинным линиям (кабель обычно состоит из двух скрученных проводов), звуковые сигналы, напряжения кардиограмм. Дифференциальные усилители используются для построения входных каскадов операционных усилителей, которые являются базой современной аналоговой схемотехники.
Дифференциальный каскад состоит из двух каскадов, у которых используется общий эмиттерный резистор (рис.11.15, а). Элементы схемы образуют мост (рис.11.15, б), в одну диагональ которого включен источник питания U ПИТ, в другую – сопротивление нагрузки R Н. Условие баланса моста, при котором его выходное напряжение равно нулю, определяется как RVT1 R K 2 = RVT2 R K 2 Нарушение этого условия приводит к разбалансировке моста и появлению выходного напряжения. Рис.11.15. Дифференциальный усилительный каскад (а) и его схема замещения (б) На вход схемы подаются сигналы, один из которых – дифференциальный необходимо усиливать, другой – синфазный необходимо подавлять. Синфазный сигнал вызывает одинаковое изменение состояния транзисторов, следовательно, выходное напряжение при идентичности параметров плеч не будет изменяться, что обеспечивает подавление синфазной помехи. Дифференциальный сигнал вызывает приоткрывание одного из транзисторов и подзапирание второго, тем самым, вызывая появление напряжения на выходе схемы. В этом случае напряжения на входах имеют противоположные знаки. Поэтому приращения как коллекторного, так и эмиттерного токов также имеют противоположные знаки. Когда в эмиттерной цепи дифференциального усилителя включен генератор стабильного тока, можно дать простое качественное объяснение работы усилителя в целом. Входные сигналы не могут изменить суммарный ток в эмиттерной и коллекторной цепи, они могут только по-разному распределять его между транзисторами. Следовательно, синфазный сигнал не меняет коллекторных токов, и выходной сигнал не возникает. Сигнал на выходе появляется только в том случае, когда входные напряжения различны, при этом в один из транзисторов будет отводиться большая доля суммарного тока эмиттеров, чем в другой. Например, если увеличивается входное напряжение первого транзистора, увеличивается его коллекторный ток, уменьшается – у второго транзистора, соответственно уменьшается напряжение коллектора первого транзистора и увеличивается – у второго транзистора, выходное напряжение равно разности этих двух напряжений. В реальном усилителе из-за неизбежной асимметрии схемы происходит лишь частичная компенсация изменений выходного напряжения, вызванного действием внешних дестабилизирующих факторов. Недостатком рассмотренных схем усилителей постоянного тока является дрейф нуля – самопроизвольное изменение выходного напряжения. В первую очередь оно обусловлено несимметрией схемы. Все рассмотренные схемотехнические приемы направлены на улучшение параметров схемы. Для устранения дрейфа нуля используются усилители постоянного тока с преобразованием. В усилителях рассматриваемого типа входной постоянный или медленно меняющийся сигнал преобразуется (модулируется) в переменный сигнал повышенной частоты. Полученный сигнал усиливается с помощью усилителя переменного напряжения, а затем вновь преобразуется (демодулируется) в постоянный или медленно меняющийся сигнал. Частота переменного напряжения часто составляет десятки килогерц. Вследствие того, что в таких усилителях отсутствуют гальванические связи между каскадами, удается достичь высокого качества усиления, так как дрейф нуля в данной схеме отсутствует. Такие усилители могут использоваться в прецизионных устройствах. Еще одним достоинством усилителей постоянного тока с преобразованием является возможность изолировать входную и выходную части.
К недостаткам таких усилителей относятся малый частотный диапазон и наличие импульсных помех от модуляторов, присутствующих в выходном сигнале.
|
|||||||
Последнее изменение этой страницы: 2016-04-19; просмотров: 250; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.137.176.238 (0.01 с.) |