Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Degree of destruction of objects (buildings, structures, transport)Содержание книги
Поиск на нашем сайте
Degree of destruction of objects (buildings, structures, transport) depending on the overpressure Objects Degree of destruction, (overpressure, kPa) Little (10-20) Medium (20-30) Intense (30-50) Shop with a light metal frame 10-20 20-30 30-50 Brick buildings 8-12 12-20 20-30 Railway Tanks 20-40 40-60 60-90 Truck 20-40 40-50 Power lines 20-40 50-70 80-120 Pipeline ground Pipelines (on the flyover) 20-30 30-40 40-50 Ground fuel storage tanks 10-30 30-50 50-100 Underground fuel storage tanks 30-50 50-100 100-200 Thermal power plant 10-15 15-20 20-25 Water tower 10-20 20-40 40-60 Wooden houses 10-20 20-30 Table 6.2 The value of heat impulses, corresponding to the ignition of materials Materials Thermal impulse, kJ/m2 Boards, rubber 230-400 Wood shavings, paper 330-500 Tarpaulin 420-500 Dry wood 500-670 Roofing (roofing material) 580-810 Chipboard 160-200 Table 6.3 The value of heat impulses and excessive pressure, corresponding to the degree of human injuries Degree of injury Thermal impulse, kJ/m2 Overpressure, kPa Secure <80 <10 Light (bruises, hearing loss) 80-100 10-40 Moderate (bleeding, dislocation, concussion) 100-400 40-60 Hard (concussion) 400-600 60-100 Lethal >600 4. The intensity of heat radiation from the explosion of FA and GA mixtures at a distance R, kJ/m2·s we can find by the formula: J = Q0·F·T, (6.5) where Q0 is the specific heat of the fire, kJ/m2·s (Table 6.4); F is the angular coefficient characterizing the relative location of the source of the explosion and the object of the economy: , (6.6) T is the thermal transparency of air: (6.7) Table 6.4 Thermal technical characteristics of some substances Substance Heat of fire, Heat of combustion, Acetone 28,4 Petrol (gasoline) 1780÷2200 Kerosene Methyl alcohol 20,9 Mixture of methane, propane, butane 40-50 Oil 43,7 Ethanol 8200÷10000 33,8 Furfural Fuel oil
5. Next, we determination of the duration of the fireball exposure burning, s: tfb =(0,45 ÷0,85)· (6.8) where М is the mass of GA/FA mixtures, kg. 6. Heat impulse U, kJ/m2, we find by the formula: U = J · tfb, (6.9) where tfb is the duration of the existence of the fireball, s, is determined by the formula (6.8). Note: In formulas (6.5 – 6.7 and 6.9) it is necessary to calculate each parameters 4 times for each subzones (subzones of full, intense, medium and little damage) respectively. You should keep it in your mind. 7. Determination of the irretrievable loss of people from the impact of the shock wave, people: N = 3 ∙ P ∙ M0,666 (6.10) where P is the population density in a given locality, thousand people per km2; M is the mass of GA/FA mixtures, ton. 8. Determination of the damaging effect of the shock wave and heat impulse is provided by comparing the calculated values of ΔPf and Ut with the table values (Tables 6.2, 6.3). Example.We calculate the scales of the zones of ES in case the explosion of tanks with flammable liquids. The calculation will be carried out for the tank farm of the gasoline storage, which is used to supply gasoline to the oil extraction plant. In the tank farm are installed 4 tanks for receiving and storing gasoline, with a volume of 25 m3 each. The density of the population in this area is 3 thousand people per km2. Physicochemical properties of gasoline: volatile flammable liquid, It is necessary to determine the radius and characteristics of the explosion zones during the explosion (overpressure in each zones of ES, fireball burning exposure time, intensity of heat radiation heat impulse) and to assess the damaging impact of shock waves on people and objects if the shop with a light metal frame is located at a distance of 400 m from the fuel storage site. Solution.We calculate the damage zones in the explosion of tanks with extraction gasoline. First of all, we calculate the mass of FA mixtures: М = (4·790·25)·0,9=71100 kg. During the explosion, five zones of damage are formed: blasting (detonation), the action of the products of the explosion (fireball), the action of the shock wave, heat damage and toxic smoke. 1. First zone – zone of blasting (shattering) action, formula (6.1): m, 2. Second zone – zone of the fireball, formula (6.2): Rfb=1,7·R1=1,7·72,5=123.25 м, 3. Third zone – zone of action of the shock wave. Radiuses of subzones full (ΔРf = 50 kPa), intense (ΔРf = 30 kPa), medium (ΔРf = 20 kPa) and little (ΔРf=10 kPa) damage we will find by the formula (6.4). Radius of subzones full damage: m Radius of subzones intense damage: m Radius of subzones medium damage: m Radius of subzones little damage: m 4. The intensity of heat radiation we determine by the formula (6.5). Firstly, we calculate the thermal transparency of air by the formula (6.7) for each zone: Тfull = 1–0,058ln306,7 = 0.66; Тintense = 1–0,058ln413,1= 0.65; Тmedium = 1–0,058ln528,7 = 0.63; Тlittle = 1–0,058ln818,3 = 0.61; The angular coefficient F we calculate by the formula (6.6) for each zone respectively: The intensity of heat radiation on the distance R3: Jfull = 1200·0,128·0,66 = 101,4 kJ/m2·s Jintense = 1200·0,078·0,65 = 60.84 kJ/m2·s Jmedium = 1200·0,05·0,63 = 37.8 kJ/m2·s Jlittle = 1200·0,022·0,61 = 16.1 kJ/m2·s 5. The duration of the fireball burning we determine by the formula (6.8): tfb = 0,65· =26.9 s 6. Heat impulse U, U, kJ/m2, we find by the formula (6.9): Ufull = 101,4·26,9 = 2727.66 Uintense = 60,84·26,9 = 1636.6 Umedium = 37,8·26,9 = 1016.82 Ulittle = 16,1·26,9 = 433.09 7. The irretrievable loss of people from the impact of the shock wave according to the formula (6.10) will be: N = 3 ∙ 3 ∙ 71.10,666 = 154 people Finally, we have to choose the main measures for protection: – deepening, embankment of tanks with gases, fuel; – installation of fire protective walls, partitions, etc.; – location of tank farms outside the zones of emergency situations (ΔРf <10 kPa, U <100 kJ/m2); – Compliance with fire and explosion safety regulations. Conclusion.As a result of the explosion, the shop with a light metal frame at the distance from center of explosion 400 m received intense damage (see Table 6.1). By the magnitude of the heat impulse 1636.6 kJ/m2, it can be assumed that people in the open area can get fatal burns. The safe distance for people is 818.3 m.
|
||||
Последнее изменение этой страницы: 2024-06-27; просмотров: 4; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.133.124.80 (0.005 с.) |