Опции, управляющие процессом подбора параметров 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Опции, управляющие процессом подбора параметров

Поиск

Для задания опций вычислительных алгоритмов, использующихся для подбора параметров служит кнопка < Fit options> диалогового окна Fitting. После нажатия на эту кнопку появляется диалоговое окно, в заголовке которого написано Fit options for и далее указано имя параметрической модели.

В зависимости от типа выбранной параметрической модели состав этого окна может быть различным.

Для сплайновой интерполяции и сглаживающего сплайна это окно не содержит никаких элементов управления, поскольку дополнительных опций соответствующие алгоритмы не требуют. Для линейных моделей можно задавать выбор целевой функции (об этом написано чуть ниже) и границы для искомых коэффициентов.

Для других типов параметрических моделей диалоговое окно Fit options for выглядит следующим образом (Рис. 23)

  Рис. 23 Диалоговое окно Fit options для задания опций вычислительных алгоритмов Вверху окна в области Method выводится информация о том, используется ли линейный (LinearLeastSquares) или нелинейный метод наименьших квадратов (NonlinearLeast Squares), что зависит от того, линейно или нелинейно входят параметры в выбранную параметрическую модель. Раскрывающийся список Robust содержит четыре возможные опции On, Off, LAR и Bisquare и служит для выбора метода приближения, устойчивого к выбросам в данных. Искомые значения параметров,. a1,a2..,ak определяются как решение задачи минимизации суммы квадратов невязок, т.е. суммы квадратов расстояний от точек данных (xj,yj) j=1,2,...,n  до приближающей их кривой y (xj; a1, a2,...,ak): Если данные (xj,yj) j=1,2,...,n снабжены весами (wj) j=1,2,...,n то решается следующая задача минимизации (если веса не заданы, то

по умолчанию они считаются равными единице).

Если имеется выброс в данных, причем соответствующий вес не задан достаточно маленьким, то он может существенно ухудшить приближение, например на следующем графике (Рис. 24) приведены данные с одним выбросом, приближаемые полиномом первой степени (линейная регрессия). Данные без выброса сгенерированы следующим образом

>> xx=1:10;

>> yy=2*xx+3+randn(size(xx));

Коэффициенты линейной функции находятся из условия минимума суммы квадратов невязок, все веса равны единице.

 

 

Рис. 24 Результат приближения данных, при отсутствии явных выбросов

 

Выброс в девятой точке равный нулю сделаем переприсвоением значения элемента массива

>> yy(9)=0;

При этом не будем указывать вес этой точке.

Выброс оказывает такое сильное влияние (Рис. 25), поскольку невязка в минимизируемом выражении возводится в квадрат.

 

Рис. 25 Результат приближения данных, при наличии явного выброса

 в режиме минимизации суммы квадратов невязок (Off)

 

Одним из способов уменьшения влияния выбросов на качество получаемого приближения состоит в минимизации суммы не квадратов невязок, а их модулей. Для этого служит опция LAR (least absolute residuals). После выбора LAR в раскрывающемся списке Robust диалогового окна Fit options и снова провести линейную регрессию, то мы увидим, что выброс в данных намного меньше влияет на получающееся приближение линейной функцией (Рис. 26). С другими типами параметрических моделей дело будет обстоять аналогичным образом.

Рис. 26 Результат приближения данных,  при наличии явного выброса

в режиме минимизации суммы квадратов модулей невязок (LAR)

 

Зададим веса всем данным равные единице, кроме выброса, а для выброса установим вес 0.1:

>> w=ones(size(xx));

>> w(9)=0.1;

Снова приблизим данные линейной параметрической моделью, только теперь следует импортировать их заново в приложение cftool, нажав кнопку Data в основном окне приложения и выбрав массивы xx, yx и w в раскрывающихся списках X Data, Y Data и Weights, соответственно. Перед началом подбора параметров выберем метод наименьших квадратов, для чего следует нажать кнопку Fit options и установить опцию Off в раскрывающемся списке Robust. Получающееся приближение приведено на Рис. 27. Заметно, что выброс практически не оказывает влияния на приближение.

Рис. 27 Результат приближения данных с выбросом линейной моделью

по методу наименьших квадратов с весами. Выброс имеет маленький вес

по сравнению с весами для остальных данных.

 

В этом примере можно было назначить точке, в которой есть заметный выброс, нулевой вес, или же воспользоваться предварительной обработкой данных для исключения выбросов (см. раздел Предварительная обработка данных). Однако, в практических задачах не всегда удается так просто определить выбросы или точки данных, которые должны оказывать меньшее влияние на получающееся приближение и назначить им соответствующие веса. Вместо этого можно воспользоваться адаптивным алгоритмом, который последовательно:

1. делает приближение, подбирая параметры по методу наименьших квадратов;

2. вычисляются приведенные невязки (см. более подробно в справочной системе по Curve Fitting Toolbox раздел Fitting Data: Parametric Fitting: The Least Squares Fitting Method);

3. в зависимости от удаленности точек от приближающей их кривой данным назначаются веса по следующему правилу (чем дальше точка, тем меньше ее вес):

4. если веса достаточно сильно изменились, то переходим к п. 1), а если процесс сошелся, то останавливаем алгоритм, нужное приближение построено.

Поскольку в приведенном выше адаптивном алгоритме присутствует четвертая степень невязки, то он называется Bisquare weights (биквадратные веса). Для выбора такого способа приближения параметрической моделью следует установить опцию Bisquare в раскрывающемся списке Robust диалогового окна Fit options. Разумеется, если пользователь задал данные и некоторые начальные веса, то они изменятся. Результирующий вес для каждой точки будет являться произведением исходного веса на тот, который вычисляет алгоритм Bisquare weights.

Результат приближения данных с выбросом линейной параметрической моделью при помощи алгоритма Bisquare weights с автоматическим подбором весов для уменьшения влияния выбросов в данных на получаемое приближение приведен на Рис. 28.

 

 

Рис. 27 Результат приближения данных с выбросом линейной моделью

по методу наименьших квадратов адаптивным алгоритмом (Bisquare).

 

Следующие опции в диалоговом окне Fit options служат для настройки алгоритмов минимизации целевой функции (в общем случае взвешенной суммы квадратов или модулей невязки.

MaxFunEvals - максимальное количество вычислений минимизируемой функции (для предотвращения зацикливания), по умолчанию минимизируемая функция вычисляется не более 600 раз, после чего алгоритм минимизации останавливается.

 

MaxIter - максимальное число итераций алгоритма минимизации (для предотвращения зацикливания), по умолчанию делается не более 400 итераций, после чего алгоритм минимизации останавливается.

 

TolFun - точность по функции (для завершения итерационного алгоритма), по умолчанию 1.0Е-6, при достижении этой точности алгоритм минимизации останавливается.

 

TolX - точность по искомым параметрам (для завершения итерационного алгоритма), по умолчанию 1.0Е-6, при достижении этой точности алгоритм минимизации останавливается.

 

DiffMinChange - минимальный шаг по каждой из искомых переменных (параметров модели) для вычисления приближенного вычисления частных производных (используемых в алгоритмах минимизации) при помощи конечных разностей, по умолчанию 1.0Е-8.

 

DiffMaxChange - минимальный шаг по каждой из искомых переменных (параметров модели) для вычисления приближенного вычисления частных производных (используемых в алгоритмах минимизации) при помощи конечных разностей, по умолчанию 0.1.

 

В диалоговом окне Fit options также можно задавать границы для разыскиваемых параметров параметрической модели и начальные приближения. Для стандартных и пользовательских параметрических моделей предлагаются по умолчанию (там где это нужно, в зависимости от типа параметрической модели) следующие границы параметров и начальные приближения.



Поделиться:


Последнее изменение этой страницы: 2022-09-03; просмотров: 61; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.216.207.209 (0.01 с.)