Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Достижения предметных результатов

Поиск
Разделы Обучающийся (выпускник) научится Обучающийся (выпускник) получит возможность научиться
Натуральные числа. Дроби. Рациональные числа - понимать особенности десятичной системы счисления; - оперировать понятиями, связанными с делимостью натуральных чисел; - выражать числа в эквивалентных формах, выбирая наиболее подходящую в зависимости от конкретной ситуации; - сравнивать и упорядочивать рациональные числа; - выполнять вычисления с рациональными числами, сочетая устные и письменные приёмы вычислений, применение калькулятора; - использовать понятия и умения, связанные с пропорциональностью величин, процентами, в ходе решения математических задач и задач из смежных предметов, выполнять несложные практические расчёты. - познакомиться с позиционными системами счисления с основаниями, отличными от 10; - углубить и развить представления о натуральных числах и свойствах делимости; - научиться использовать приёмы, рационализирующие вычисления, приобрести привычку контролировать вычисления, выбирая подходящий для ситуации способ.
Действительные числа - использовать начальные представления о множестве действительных чисел; - оперировать понятием квадратного корня, применять его в вычислениях. - развить представление о числе и числовых системах от натуральных до действительных чисел; - о роли вычислений в практике; - развить и углубить знания о десятичной записи действительных чисел (периодические и непериодические дроби).
Измерения, приближения, оценки - использовать в ходе решения задач элементарные представления, связанные с приближёнными значениями величин. - понять, что числовые данные, которые используются для характеристики объектов окружающего мира, являются преимущественно приближёнными, что по записи приближённых значений, содержащихся в информационных источниках, можно судить о погрешности приближения; - понять, что погрешность результата вычислений должна быть соизмерима с погрешностью исходных данных.
Алгебраические выражения - оперировать понятиями «тождество», «тождественное преобразование», решать задачи, содержащие буквенные данные; - работать с формулами; - выполнять преобразования выражений, содержащих степени с целыми показателями и квадратные корни; - выполнять тождественные преобразования рациональных выражений на основе правил действий над многочленами и алгебраическими дробями; - выполнять разложение многочленов на множители. - выполнять многошаговые преобразования рациональных выражений, применяя широкий набор способов и приёмов; - применять тождественные преобразования для решения задач из различных разделов курса (например, для нахождения наибольшего/наименьшего значения выражения).
Уравнения - решать основные виды рациональных уравнений с одной переменной, системы двух уравнений с двумя переменными; - понимать уравнение как важнейшую математическую модель для описания и изучения разнообразных реальных ситуаций, решать текстовые задачи алгебраическим методом; - применять графические представления для исследования уравнений, исследования и решения систем уравнений с двумя переменными. - овладеть специальными приёмами решения уравнений и систем уравнений; - уверенно применять аппарат уравнений для решения разнообразных задач из математики, смежных предметов, практики; - применять графические представления для исследования уравнений, систем уравнений, содержащих буквенные коэффициенты.
Неравенства - понимать и применять терминологию и символику, связанные с отношением неравенства, свойства числовых неравенств; - решать линейные неравенства с одной переменной и их системы; - решать квадратные неравенства с опорой на графические представления; - применять аппарат неравенств для решения задач из различных разделов курса. - разнообразным приёмам доказательства неравенств; - уверенно применять аппарат неравенств для решения разнообразных математических задач и задач из смежных предметов, практики; - применять графические представления для исследования неравенств, систем неравенств, содержащих буквенные коэффициенты.
Основные понятия. Числовые функции - понимать и использовать функциональные понятия и язык (термины, символические обозначения); - строить графики элементарных функций; - исследовать свойства числовых функций на основе изучения поведения их графиков; - понимать функцию как важнейшую математическую модель для описания процессов и явлений окружающего мира, применять функциональный язык для описания и исследования зависимостей между физическими величинами. - проводить исследования, связанные с изучением свойств функций, в том числе с использованием компьютера; - на основе графиков изученных функций строить более сложные графики (кусочно-заданные, с «выколотыми» точками и т. п.); - использовать функциональные представления и свойства функций для решения математических задач из различных разделов курса.
Числовые последовательности - понимать и использовать язык последовательностей (термины, символические обозначения); - применять формулы, связанные с арифметической и геометрической прогрессией, и аппарат, сформированный при изучении других разделов курса, к решению задач, в том числе с контекстом из реальной жизни. - решать комбинированные задачи с применением формул n-го члена и суммы первых n членов арифметической и геометрической прогрессии, применяя при этом аппарат уравнений и неравенств; - понимать арифметическую и геометрическую прогрессию как функции натурального аргумента; - связывать арифметическую прогрессию с линейным ростом, геометрическую — с экспоненциальным ростом.
Описательная статистика - Выпускник научится использовать простейшие способы представления и анализа статистических данных. - Выпускник получит возможность приобрести первоначальный опыт организации сбора данных при проведении опроса общественного мнения, осуществлять их анализ, представлять результаты опроса в виде таблицы, диаграммы.
Случайные события и вероятность - Выпускник научится находить относительную частоту и вероятность случайного события. - приобрести опыт проведения случайных экспериментов, в том числе с помощью компьютерного моделирования, интерпретации их результатов.
Комбинаторика - решать комбинаторные задачи на нахождение числа объектов или комбинаций. - Научиться некоторым специальным приёмам решения комбинаторных задач.
Наглядная геометрия - распознавать на чертежах, рисунках, моделях и в окружающем мире плоские и пространственные геометрические фигуры; - распознавать развёртки куба, прямоугольного параллелепипеда, правильной пирамиды, цилиндра и конуса; - строить развёртки куба и прямоугольного параллелепипеда; - определять по линейным размерам развёртки фигуры линейные размеры самой фигуры и наоборот; - вычислять объём прямоугольного параллелепипеда. - научиться вычислять объёмы пространственных геометрических фигур, составленных из прямоугольных параллелепипедов; - углубить и развить представления о пространственных геометрических фигурах; - научиться применять понятие развёртки для выполнения практических расчётов.
Геометрические фигуры - пользоваться языком геометрии для описания предметов окружающего мира и их взаимного расположения; - распознавать и изображать на чертежах и рисунках геометрические фигуры и их конфигурации; - находить значения длин линейных элементов фигур и их отношения, градусную меру углов от 0° до 180°, применяя определения, свойства и признаки фигур и их элементов, отношения фигур (равенство, подобие, симметрии, поворот, параллельный перенос); - оперировать с начальными понятиями тригонометрии и выполнять элементарные операции над функциями углов; - решать задачи на доказательство, опираясь на изученные свойства фигур и отношений между ними и применяя изученные методы доказательств; - решать несложные задачи на построение, применяя основные алгоритмы построения с помощью циркуля и линейки; - решать простейшие планиметрические задачи в пространстве. - овладеть методами решения задач на вычисления и доказательства: методом от противного, методом подобия, методом перебора вариантов и методом геометрических мест точек; - приобрести опыт применения алгебраического и тригонометрического аппарата и идей движения при решении геометрических задач; - овладеть традиционной схемой решения задач на построение с помощью циркуля и линейки: анализ, построение, доказательство и исследование; - научиться решать задачи на построение методом геометрического места точек и методом подобия; - приобрести опыт исследования свойств планиметрических фигур с помощью компьютерных программ; - приобрести опыт выполнения проектов по темам «Геометрические преобразования на плоскости», «Построение отрезков по формуле».
Измерение геометрических величин - использовать свойства измерения длин, площадей и углов при решении задач на нахождение длины отрезка, длины окружности, длины дуги окружности, градусной меры угла; - вычислять площади треугольников, прямоугольников, параллелограммов, трапеций, кругов и секторов; - вычислять длину окружности, длину дуги окружности; - вычислять длины линейных элементов фигур и их углы, используя формулы длины окружности и длины дуги окружности, формулы площадей фигур; - решать задачи на доказательство с использованием формул длины окружности и длины дуги окружности, формул площадей фигур; - решать практические задачи, связанные с нахождением геометрических величин (используя при необходимости справочники и технические средства). - вычислять площади фигур, составленных из двух или более прямоугольников, параллелограммов, треугольников, круга и сектора; - вычислять площади многоугольников, используя отношения равновеликости и равносоставленности; - применять алгебраический и тригонометрический аппарат и идеи движения при решении задач на вычисление площадей многоугольников
Координаты - вычислять длину отрезка по координатам его концов; - вычислять координаты середины отрезка; - использовать координатный метод для изучения свойств прямых и окружностей. - овладеть координатным методом решения задач на вычисления и доказательства; - приобрести опыт использования компьютерных программ для анализа частных случаев взаимного расположения окружностей и прямых; - приобрести опыт выполнения проектов на тему «Применение координатного метода при решении задач на вычисления и доказательства».
Векторы - оперировать с векторами: находить сумму и разность двух векторов, заданных геометрически, находить вектор, равный произведению заданного вектора на число; - находить для векторов, заданных координатами: длину вектора, координаты суммы и разности двух и более векторов, координаты произведения вектора на число, применяя при необходимости сочетательный, переместительный и распределительный законы; - вычислять скалярное произведение векторов, находить угол между векторами, устанавливать перпендикулярность прямых. - овладеть векторным методом для решения задач на вычисления и доказательства; - приобрести опыт выполнения проектов на тему «применение векторного метода при решении задач на вычисления и доказательства».

Ученик научится в 5-6 классах ( для использования в повседневной жизни и обеспечения возможности успешного продолжения образования на базовом уровне)

Оперировать на базовом уровне[1] понятиями: множество, элемент множества, подмножество, принадлежность;

задавать множества перечислением их элементов;

находить пересечение, объединение, подмножество в простейших ситуациях.

В повседневной жизни и при изучении других предметов:

распознавать логически некорректные высказывания.

Числа

Оперировать на базовом уровне понятиями: натуральное число, целое число, обыкновенная дробь, десятичная дробь, смешанное число, рациональное число;

использовать свойства чисел и правила действий с рациональными числами при выполнении вычислений;

использовать признаки делимости на 2, 5, 3, 9, 10 при выполнении вычислений и решении несложных задач;

выполнять округление рациональных чисел в соответствии с правилами;

сравнивать рациональные числа.

В повседневной жизни и при изучении других предметов:

оценивать результаты вычислений при решении практических задач;

выполнять сравнение чисел в реальных ситуациях;

составлять числовые выражения при решении практических задач и задач из других учебных предметов.

Статистика и теория вероятностей

Представлять данные в виде таблиц, диаграмм,

читать информацию, представленную в виде таблицы, диаграммы.

Текстовые задачи

Решать несложные сюжетные задачи разных типов на все арифметические действия;

строить модель условия задачи (в виде таблицы, схемы, рисунка), в которой даны значения двух из трёх взаимосвязанных величин, с целью поиска решения задачи;

осуществлять способ поиска решения задачи, в котором рассуждение строится от условия к требованию или от требования к условию;

составлять план решения задачи;

выделять этапы решения задачи;

интерпретировать вычислительные результаты в задаче, исследовать полученное решение задачи;

знать различие скоростей объекта в стоячей воде, против течения и по течению реки;

решать задачи на нахождение части числа и числа по его части;

решать задачи разных типов (на работу, на покупки, на движение), связывающих три величины, выделять эти величины и отношения между ними;

находить процент от числа, число по проценту от него, находить процентное отношение двух чисел, находить процентное снижение или процентное повышение величины;

решать несложные логические задачи методом рассуждений.

В повседневной жизни и при изучении других предметов:

выдвигать гипотезы о возможных предельных значениях искомых величин в задаче (делать прикидку)

Наглядная геометрия

Геометрические фигуры

Оперировать на базовом уровне понятиями: фигура,точка, отрезок, прямая, луч, ломаная, угол, многоугольник, треугольник и четырёхугольник, прямоугольник и квадрат, окружность и круг, прямоугольный параллелепипед, куб, шар. Изображать изучаемые фигуры от руки и с помощью линейки и циркуля.

В повседневной жизни и при изучении других предметов:

решать практические задачи с применением простейших свойств фигур.

Измерения и вычисления

выполнять измерение длин, расстояний, величин углов, с помощью инструментов для измерений длин и углов;

вычислять площади прямоугольников.

В повседневной жизни и при изучении других предметов:

вычислять расстояния на местности в стандартных ситуациях, площади прямоугольников;

выполнять простейшие построения и измерения на местности, необходимые в реальной жизни.

История математики

описывать отдельные выдающиеся результаты, полученные в ходе развития математики как науки;

знать примеры математических открытий и их авторов, в связи с отечественной и всемирной историей.

Ученик получит возможность научиться в 5-6 классах (для обеспечения возможности успешного продолжения образования на базовом и углублённом уровнях)

Элементы теории множеств и математической логики

Оперировать[2] понятиями: множество, характеристики множества, элемент множества, пустое, конечное и бесконечное множество, подмножество, принадлежность,

определять принадлежность элемента множеству, объединению и пересечению множеств; задавать множество с помощью перечисления элементов, словесного описания.

В повседневной жизни и при изучении других предметов:

распознавать логически некорректные высказывания;

строить цепочки умозаключений на основе использования правил логики.

Числа

Оперировать понятиями: натуральное число, множество натуральных чисел, целое число, множество целых чисел, обыкновенная дробь, десятичная дробь, смешанное число, рациональное число, множество рациональных чисел, геометрическая интерпретация натуральных, целых, рациональных;

понимать и объяснять смысл позиционной записи натурального числа;

выполнять вычисления, в том числе с использованием приёмов рациональных вычислений, обосновывать алгоритмы выполнения действий;

использовать признаки делимости на 2, 4, 8, 5, 3, 6, 9, 10, 11, суммы и произведения чисел при выполнении вычислений и решении задач, обосновывать признаки делимости;

выполнять округление рациональных чисел с заданной точностью;

упорядочивать числа, записанные в виде обыкновенных и десятичных дробей;

находить НОД и НОК чисел и использовать их при решении зада;.

оперировать понятием модуль числа, геометрическая интерпретация модуля числа.

В повседневной жизни и при изучении других предметов:

применять правила приближенных вычислений при решении практических задач и решении задач других учебных предметов;

выполнять сравнение результатов вычислений при решении практических задач, в том числе приближенных вычислений;

составлять числовые выражения и оценивать их значения при решении практических задач и задач из других учебных предметов.

Уравнения и неравенства

Оперировать понятиями: равенство, числовое равенство, уравнение, корень уравнения, решение уравнения, числовое неравенство.

Статистика и теория вероятностей

Оперировать понятиями: столбчатые и круговые диаграммы, таблицы данных, среднее арифметическое,

извлекать, информацию, представленную в таблицах, на диаграммах;

составлять таблицы, строить диаграммы на основе данных.

В повседневной жизни и при изучении других предметов:

извлекать, интерпретировать и преобразовывать информацию, представленную в таблицах и на диаграммах, отражающую свойства и характеристики реальных процессов и явлений.

Текстовые задачи

Решать простые и сложные задачи разных типов, а также задачи повышенной трудности;

использовать разные краткие записи как модели текстов сложных задач для построения поисковой схемы и решения задач;

знать и применять оба способа поиска решения задач (от требования к условию и от условия к требованию);

моделировать рассуждения при поиске решения задач с помощью граф-схемы;

выделять этапы решения задачи и содержание каждого этапа;

интерпретировать вычислительные результаты в задаче, исследовать полученное решение задачи;

анализировать всевозможные ситуации взаимного расположения двух объектов и изменение их характеристик при совместном движении (скорость, время, расстояние) при решении задач на движение двух объектов как в одном, так и в противоположных направлениях;

исследовать всевозможные ситуации при решении задач на движение по реке, рассматривать разные системы отсчёта;

решать разнообразные задачи «на части»,

решать и обосновывать свое решение задач (выделять математическую основу) на нахождение части числа и числа по его части на основе конкретного смысла дроби;

осознавать и объяснять идентичность задач разных типов, связывающих три величины (на работу, на покупки, на движение); выделять эти величины и отношения между ними, применять их при решении задач, конструировать собственные задачи указанных типов.

В повседневной жизни и при изучении других предметов:

выделять при решении задач характеристики рассматриваемой в задаче ситуации, отличные от реальных (те, от которых абстрагировались), конструировать новые ситуации с учётом этих характеристик, в частности, при решении задач на концентрации, учитывать плотность вещества;

решать и конструировать задачи на основе рассмотрения реальных ситуаций, в которых не требуется точный вычислительный результат;

решать задачи на движение по реке, рассматривая разные системы отсчета.

Наглядная геометрия

Геометрические фигуры

Извлекать, интерпретировать и преобразовывать информацию о геометрических фигурах, представленную на чертежах;

изображать изучаемые фигуры от руки и с помощью компьютерных инструментов.

Измерения и вычисления

выполнять измерение длин, расстояний, величин углов, с помощью инструментов для измерений длин и углов;

вычислять площади прямоугольников, квадратов, объёмы прямоугольных параллелепипедов, кубов.

В повседневной жизни и при изучении других предметов:

вычислять расстояния на местности в стандартных ситуациях, площади участков прямоугольной формы, объёмы комнат;

выполнять простейшие построения на местности, необходимые в реальной жизни;

оценивать размеры реальных объектов окружающего мира.

История математики

Характеризовать вклад выдающихся математиков в развитие математики и иных научных областей.

 

Выпускник научится в 7-9 классах (для использования в повседневной жизни и обеспечения возможности успешного продолжения образования на базовом уровне)

Элементы теории множеств и математической логики

Оперировать на базовом уровне[3] понятиями: множество, элемент множества, подмножество, принадлежность;

задавать множества перечислением их элементов;

находить пересечение, объединение, подмножество в простейших ситуациях;

оперировать на базовом уровне понятиями: определение, аксиома, теорема, доказательство;

приводить примеры и контрпримеры для подтвержнения своих высказываний.

В повседневной жизни и при изучении других предметов:

использовать графическое представление множеств для описания реальных процессов и явлений, при решении задач других учебных предметов.

Числа

Оперировать на базовом уровне понятиями: натуральное число, целое число, обыкновенная дробь, десятичная дробь, смешанная дробь, рациональное число, арифметический квадратный корень;

использовать свойства чисел и правила действий при выполнении вычислений;

использовать признаки делимости на 2, 5, 3, 9, 10 при выполнении вычислений и решении несложных задач;

выполнять округление рациональных чисел в соответствии с правилами;

оценивать значение квадратного корня из положительного целого числа;

распознавать рациональные и иррациональные числа;

сравнивать числа.

В повседневной жизни и при изучении других предметов:

оценивать результаты вычислений при решении практических задач;

выполнять сравнение чисел в реальных ситуациях;

составлять числовые выражения при решении практических задач и задач из других учебных предметов.

Тождественные преобразования

Выполнять несложные преобразования для вычисления значений числовых выражений, содержащих степени с натуральным показателем, степени с целым отрицательным показателем;

выполнять несложные преобразования целых выражений: раскрывать скобки, приводить подобные слагаемые;

использовать формулы сокращенного умножения (квадрат суммы, квадрат разности, разность квадратов) для упрощения вычислений значений выражений;

выполнять несложные преобразования дробно-линейных выражений и выражений с квадратными корнями.

В повседневной жизни и при изучении других предметов:

понимать смысл записи числа в стандартном виде;

оперировать на базовом уровне понятием «стандартная запись числа».

Уравнения и неравенства

Оперировать на базовом уровне понятиями: равенство, числовое равенство, уравнение, корень уравнения, решение уравнения, числовое неравенство, неравенство, решение неравенства;

проверять справедливость числовых равенств и неравенств;

решать линейные неравенства и несложные неравенства, сводящиеся к линейным;

решать системы несложных линейных уравнений, неравенств;

проверять, является ли данное число решением уравнения (неравенства);

решать квадратные уравнения по формуле корней квадратного уравнения;

изображать решения неравенств и их систем на числовой прямой.

В повседневной жизни и при изучении других предметов:

составлять и решать линейные уравнения при решении задач, возникающих в других учебных предметах.

Функции

Находить значение функции по заданному значению аргумента;

находить значение аргумента по заданному значению функции в несложных ситуациях;

определять положение точки по её координатам, координаты точки по её положению на координатной плоскости;

по графику находить область определения, множество значений, нули функции, промежутки знакопостоянства, промежутки возрастания и убывания, наибольшее и наименьшее значения функции;

строить график линейной функции;

проверять, является ли данный график графиком заданной функции (линейной, квадратичной, обратной пропорциональности);

определять приближённые значения координат точки пересечения графиков функций;

оперировать на базовом уровне понятиями: последовательность, арифметическая прогрессия, геометрическая прогрессия;

решать задачи на прогрессии, в которых ответ может быть получен непосредственным подсчётом без применения формул.

В повседневной жизни и при изучении других предметов:

использовать графики реальных процессов и зависимостей для определения их свойств (наибольшие и наименьшие значения, промежутки возрастания и убывания, области положительных и отрицательных значений и т.п.);

использовать свойства линейной функции и ее график при решении задач из других учебных предметов.

Статистика и теория вероятностей

Иметь представление о статистических характеристиках, вероятности случайного события, комбинаторных задачах;

решать простейшие комбинаторные задачи методом прямого и организованного перебора;

представлять данные в виде таблиц, диаграмм, графиков;

читать информацию, представленную в виде таблицы, диаграммы, графика;

определять основные статистические характеристики числовых наборов;

оценивать вероятность события в простейших случаях;

иметь представление о роли закона больших чисел в массовых явлениях.

В повседневной жизни и при изучении других предметов:

оценивать количество возможных вариантов методом перебора;

иметь представление о роли практически достоверных и маловероятных событий;

сравнивать основные статистические характеристики, полученные в процессе решения прикладной задачи, изучения реального явления;

оценивать вероятность реальных событий и явлений в несложных ситуациях.

Текстовые задачи

Решать несложные сюжетные задачи разных типов на все арифметические действия;

строить модель условия задачи (в виде таблицы, схемы, рисунка или уравнения), в которой даны значения двух из трёх взаимосвязанных величин, с целью поиска решения задачи;

осуществлять способ поиска решения задачи, в котором рассуждение строится от условия к требованию или от требования к условию;

составлять план решения задачи;

выделять этапы решения задачи;

интерпретировать вычислительные результаты в задаче, исследовать полученное решение задачи;

знать различие скоростей объекта в стоячей воде, против течения и по течению реки;

решать задачи на нахождение части числа и числа по его части;

решать задачи разных типов (на работу, на покупки, на движение), связывающих три величины, выделять эти величины и отношения между ними;

находить процент от числа, число по проценту от него, находить процентное снижение или процентное повышение величины;

решать несложные логические задачи методом рассуждений.

В повседневной жизни и при изучении других предметов:

выдвигать гипотезы о возможных предельных значениях искомых в задаче величин (делать прикидку).

Геометрические фигуры

Оперировать на базовом уровне понятиями геометрических фигур;

извлекать информацию о геометрических фигурах, представленную на чертежах в явном виде;

применять для решения задач геометрические факты, если условия их применения заданы в явной форме;

решать задачи на нахождение геометрических величин по образцам или алгоритмам.

В повседневной жизни и при изучении других предметов:

использовать свойства геометрических фигур для решения типовых задач, возникающих в ситуациях повседневной жизни, задач практического содержания.

Отношения

Оперировать на базовом уровне понятиями: равенство фигур, равные фигуры, равенство треугольников, параллельность прямых, перпендикулярность прямых, углы между прямыми, перпендикуляр, наклонная, проекция.

В повседневной жизни и при изучении других предметов:

использовать отношения для решения простейших задач, возникающих в реальной жизни.

Измерения и вычисления

Выполнять измерение длин, расстояний, величин углов, с помощью инструментов для измерений длин и углов;

применять формулы периметра, площади и объёма, площади поверхности отдельных многогранников при вычислениях, когда все данные имеются в условии;

применять теорему Пифагора, базовые тригонометрические соотношения для вычисления длин, расстояний, площадей в простейших случаях.

В повседневной жизни и при изучении других предметов:

вычислять расстояния на местности в стандартных ситуациях, площади в простейших случаях, применять формулы в простейших ситуациях в повседневной жизни.

Геометрические построения

Изображать типовые плоские фигуры и фигуры в пространстве от руки и с помощью инструментов.

В повседневной жизни и при изучении других предметов:

выполнять простейшие построения на местности, необходимые в реальной жизни.

Геометрические преобразования

Строить фигуру, симметричную данной фигуре относительно оси и точки.

В повседневной жизни и при изучении других предметов:

распознавать движение объектов в окружающем мире;

распознавать симметричные фигуры в окружающем мире.

Векторы и координаты на плоскости

Оперировать на базовом уровне понятиями вектор, сумма векторов, произведение вектора на число,координаты на плоскости;

определять приближённо координаты точки по её изображению на координатной плоскости.

В повседневной жизни и при изучении других предметов:

использовать векторы для решения простейших задач на определение скорости относительного движения.

История математики

Описывать отдельные выдающиеся результаты, полученные в ходе развития математики как науки;

знать примеры математических открытий и их авторов, в связи с отечественной и всемирной историей;

понимать роль математики в развитии России.

Методы математики

Выбирать подходящий изученный метод для решении изученных типов математических задач;

Приводить примеры математических закономерностей в окружающей действительности и произведениях искусства.

 

Выпускник получит возможность научиться в 7-9 классах для обеспечения возможности успешного продолжения образования на базовом и углублённом уровнях

Элементы теории множеств и математической логики

Оперировать[4] понятиями: определение, теорема, аксиома, множество, характеристики множества, элемент множества, пустое, конечное и бесконечное множество, подмножество, принадлежность, включение, равенство множеств;

изображать множества и отношение множеств с помощью кругов Эйлера;

определять принадлежность элемента множеству, объединению и пересечению множеств;

задавать множество с помощью перечисления элементов, словесного описания;

оперировать понятиями: высказывание, истинность и ложность высказывания, отрицание высказываний, операции над высказываниями: и, или, не, условные высказывания (импликации);

строить высказывания, отрицания высказываний.

В повседневной жизни и при изучении других предметов:

строить цепочки умозаключений на основе использования правил логики;

использовать множества, операции с множествами, их графическое представление для описания реальных процессов и явлений.

Числа

Оперировать понятиями: множество натуральных чисел, множество целых чисел, множество рациональных чисел, иррациональное число, квадратный корень, множество действительных чисел, геометрическая интерпретация натуральных, целых, рациональных, действительных чисел;

понимать и объяснять смысл позиционной записи натурального числа;

выполнять вычисления, в том числе с использованием приёмов рациональных вычислений;

выполнять округление рациональных чисел с заданной точностью;

сравнивать рациональные и иррациональные числа;

представлять рациональное число в виде десятичной дроби

упорядочивать числа, записанные в виде обыкновенной и десятичной дроби;

находить НОД и НОК чисел и использовать их при решении задач.

В повседневной жизни и при изучении других предметов:

применять правила приближенных вычислений при решении практических задач и решении задач других учебных предметов;

выполнять сравнение результатов вычислений при решении практических задач, в том числе приближенных вычислений;

составлять и оценивать числовые выражения при решении практических задач и задач из других учебных предметов;

записывать и округлять числовые значения реальных величин с использованием разных систем измерения.

Тождественные преобразования

Оперировать понятиями степени с натуральным показателем, степени с целым отрицательным показателем;

выполнять преобразования целых выражений: действия с одночленами (сложение, вычитание, умножение), действия с многочленами (сложение, вычитание, умножение);

выполнять разложение многочленов на множители одним из способов: вынесение за скобку, группировка, использование формул сокращенного умножения;

выделять квадрат суммы и разности одночленов;

раскладывать на множители квадратный   трёхчлен;

выполнять преобразования выражений, содержащих степени с целыми отрицательными показателями, переходить от записи в виде степени с целым отрицательным показателем к записи в виде дроби;

выполнять преобразования дробно-рациональных выражений: сокращение дробей, приведение алгебраических дробей к общему знаменателю, сложение, умножение, деление алгебраических дробей, возведение алгебраической дроби в натуральную и целую отрицательную степень;

выполнять преобразования выражений, содержащих квадратные корни;

выделять квадрат суммы или разности двучлена в выражениях, содержащих квадратные корни;

выполнять преобразования выражений, содержащих модуль.

В повседневной жизни и при изучении других предметов:

выполнять преобразования и действия с числами, записанными в стандартном виде;

выполнять преобразования алгебраических выражений при решении задач других учебных предметов.

Уравнения и неравенства

Оперировать понятиями: уравнение, неравенство, корень уравнения, решение неравенства, равносильные уравнения, область определения уравнения (неравенства, системы уравнений или неравенств);

решать линейные уравнения и уравнения, сводимые к линейным с помощью тождественных преобразований;

решать квадратные уравнения и уравнения, сводимые к квадратным с помощью тождественных преобразований;

решать дробно-линейные уравнения;

решать простейшие иррациональные уравнения вида , ;

решать уравнения вида ;



Поделиться:


Последнее изменение этой страницы: 2021-09-25; просмотров: 140; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.144.116.195 (0.014 с.)