Тенденция к сближению локальных и глобальных сетей 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Тенденция к сближению локальных и глобальных сетей



Если принять во внимание все выше перечисленные различия локальных и глобальных сетей, то становится понятно, почему так долго могли существовать раздельно два сообщества специалистов, занимающиеся этими двумя видами сетей. Но за последние годы ситуация резко изменилась.

Специалисты по локальным сетям, перед которыми встали задачи объединения нескольких локальных сетей, расположенных в разных географически удаленных друг от друга филиалах одного большого предприятия, были просто вынуждены обратить свои взоры к чуждому для них миру глобальных сетей и телекоммуникаций. Тесная интеграция удаленных локальных сетей не позволяет рассматривать глобальные сети как "черный ящик", представляющий собой только инструмент транспортировки сообщений на большие расстояния. Поэтому все, что связано с глобальными связями и удаленным доступом, стало предметом живейшего интереса для специалистов по локальным сетям.

С другой стороны, стремление повысить пропускную способность, скорость передачи данных, расширить набор и оперативность сервисов, другими словами, стремление, улучшить качество предоставляемых услуг - все это заставило специалистов по глобальным сетям обратить пристальное внимание на технологии, используемые в локальных сетях. Таким образом, в мире локальных и глобальных сетей явно наметилось движение навстречу друг другу, которое уже сегодня привело к значительному взаимопроникновению этих двух сетевых технологий.

0дним из проявлений этого „сближения, является появление сетей масштаба большого города (MAN), занимающих промежуточное положение между локальными и глобальными сетями. При достаточно больших расстояниях между узлами они обладают качественными линиями связи и высокими скоростями обмена, даже более высокими, чем в классических локальных сетях. Как и в случае локальных сетей, при построении MAN уже существующие линии связи не используются, а прокладываются заново.

 Метод коммутации пакетов всегда был основным методом для локальных сетей, теперь с распространением сетей метрополий и технологии АТМ он становится основным и для глобальных сетей, причем не только глобальных компьютерных сетей, но и цифровых телефонных сетей, передающих одновременно голос, видеоинформацию и компьютерные данные (сети с интеграцией услуг).                                             

Сближение в используемых методах передачи данных происходит и на платформе оптической цифровой (немодулированной) передачи данных по оптоволоконным линиям связи. Технология АТМ претендует на то, чтобы стать единым методом передачи данных как в локальных, так и в глобальных сетях. Из-за резкого улучшения качества каналов связи в глобальных сетях начали отказываться от сложных и избыточных процедур обеспечения корректности передачи данных. Примером могут служить сети frame relay. В этих сетях предполагается, что искажение битов происходит настолько редко, что ошибочный пакет можно просто уничтожить, а все проблемы, связанные с его потерей, решить с помощью программ прикладного уровня, которые непосредственно не входят в состав сети frame relay.

За счет новых сетевых технологий и, соответственно, нового оборудования рассчитанной го на использование более качественных линий связи, скорости передачи данных в уже существующих коммерческих глобальных сетях нового поколения приближаются к скоростям локальных сетей (в сетях frame relay сейчас доступны скорости 2 Мб/с), а в экспериментальных глобальных сетях АТМ и превосходят их, достигая сотен мегабит в секунду.

Локальные сети, в свою очередь, перенимают некоторые родовые черты глобальных сетей. Почти все новые скоростные технологии используют специальные устройства - коммутаторы или концентраторы, которые передают пакеты между компьютерами, подключенными к этим устройствам, с помощью индивидуальных, а не разделяемых линий связи. В этих технологиях коммутаторы соединяют между собой по иерархической схеме. подобно тому, как это делается в телефонных сетях: имеются коммутаторы нижнего уровня, к которым непосредственно подключаются компьютеры сети, и имеются коммутаторы следующего уровня, которые соединяют между собой коммутаторы нижнего уровня и т.д. Коммутаторы более высоких уровней обладают, как правило, большей производительностью и работают с более скоростными каналами, уплотняя данные нижних уровней. Описанными чертами глобальных сетей (не всегда всеми одновременно) обладают новые технологии Fast Ethernet и 100VG-AnyLAN, а также технология АТМ.

Претерпевают изменения и классические технологии локальных сетей, такие как Ethernet и Token Ring. Появился новый класс концентраторов, так называемые коммутирующие концентраторы, которые используют технологию, близкую к технологии цифровой телефонной коммутации, для передачи данных между традиционными разделяемыми каналами локальных сетей. Такие концентраторы имеют в своих названиях родовую приставку switching, то есть коммутирующие, а технология коммутации традиционных протоколов локальных сетей называется LAN switching. С учетом изменений в технологии передачи пакетов по линиям связи основной топологией локальных сетей становится иерархическая звезда, характерная и для многих глобальных сетей, особенно общественных.

Сервисы on-line, оперативного доступа, становятся обычными и в глобальных сетях. Пример - гипертекстовые информационные службы World Wide Web.

В локальных сетях в последнее время уделяется такое же большое внимание методам обеспечения защиты информации от несанкционированного доступа, как и в глобальных сетях. Такое внимание обусловлено тем, что локальные сети перестали быть изолированными, чаще всего они имеют выход в "большой мир" через глобальные связи. При этом часто используются одни и те же методы – шифрация

данных, аутентификация пользователей, возведение защитных барьеров, предохраняющих от проникновения в сеть извне.

Высокая степень стандартизации, модульности и, вследствие этого - легкая расширяемость и масштабируемость теперь характерны не только для локальных, но и для глобальных сетей нового поколения. Все стандарты этих сетей предусматривают наращивание числа узлов и возможность объединения нескольких сетей в единую сеть. Появляются новые технологии, изначально предназначенные для обоих видов сетей. Если одна из таких технологий - АТМ - завоюет мир, то она станет общим стандартом для большинства локальных и глобальных сетей.

Типы глобальных сетей

Глобальные сети удобно грубо классифицировать по используемым в них методам коммутации. По этому признаку глобальные сети передачи данных делятся на сети с некоммутируемыми каналами, сети с коммутацией каналов и сети с коммутацией пакетов.

Выделенные каналы представляют собой постоянные частные каналы связи, которые арендуются у телекоммуникационной фирмы. У вас должны быть высокие требования к пропускной способности глобальных связей для обоснования необходимости аренды выделенных линий, хотя потребность в комбинированной передаче речи, факсов и цифровых данных часто являются достаточным основанием для использования частных сетей и аренды линий. Примерами выделенных линий являются цифровые каналы 56/64 Кб/с. Т1/Е1 и каналы технологий SONET/SDH.

Рисунок 17.1. Способы коммутации в сетях

                 а) выделенные каналы, 6) сети с коммутацией каналов, в) сети с коммутацией пакетов

 

В сетях с коммутацией каналов между двумя конечными пользователями устанавливается временный выделенный канал, который существует в течение всего периода передачи данных. Канал образуется с помощью мультиплексирования с разделением времени или путем выделения каждому каналу определенной части имеющейся пропускной способности. Пользователи обладают этим каналом монопольно - то есть не разделяют его ни с кем другим, пока не разорвут соединение. По сетям с коммутацией каналов могут пересылаться речь, данные и изображения, хотя чувствительные ко времени сигналы в наибольшей степени соответствуют этому типу сетей. Примером коммерчески доступных сетей с коммутацией каналов являются сети ISDN (рисунок 17.16).

В сетях с коммутацией пакетов данные разделяются на пакеты и пересылаются по каналам, разделяемым множеством пользователей. Каждый пакет снабжается адресами источника и приемника, а также другой служебной информацией. По мере того, как пакет перемещается по сети, коммутирующее устройство читает эти адреса и перемещает пакет по нужному маршруту к адресу назначения. Эти сети часто называют сетями с виртуальными каналами. Сети с коммутацией пакетов наилучшим образом соответствуют трафику локальных сетей, который является асинхронным и неравномерным во времени. Примерами таких сетей являются сети frame relay и X.25 (рисунок 17.1в).

Пропускная способность по требованию - это новая концепция, в соответствии с которой пользователю предоставляется возможность затребовать такую пропускную способность канала, какая требуется его приложению. Такие услуги также позволяют платить только за ту пропускную способность, которая была использована, вместо того, чтобы оплачивать канал независимо от того, используется он полностью или нет. Сервисы "пропускная способность по требованию" появились в 90-е годы и могут поддерживаться различными сетями, такими как frame relay, ISDN, switched 56 и другими.

17.4. Выбор типа глобальных связей.                                                      17.4.1. Измерение глобального трафика.

Одним из главных критериев при выборе типа глобальной связи является необходимая пропускная способность канала. Точная оценка необходимой пропускной способности для глобальных связей в общем случае требует привлечения математических методов, среди которых наиболее популярными для такого рода задач являются методы теории массового обслуживания. Необходимость таких точных оценок связана с тем, что интенсивность локального трафика не связана непосредственно с затрачиваемыми средствами. в то время как завышенные требования к пропускной способности глобального канала приводят к весьма значительным дополнительным затратам, например, к увеличению арендной платы за выделенный канал.

При оценке глобального трафика нужно учитывать следующие достаточно общие соображения.

• По глобальным связям передается только часть локального трафика. Очевидно, что за счет мостов, маршрутизаторов или шлюзов в глобальную связь передаются только те пакеты, адреса которых соответствуют удаленным локальным сетям. Для сокращения нагрузки на глобальную связь широковещательные локальные пакеты (пакеты протоколов RIP, SAP или пакеты watchdog) должны подвергаются фильтрации (технология стаффинга).

• Необходимо выяснить максимально допустимое с точки зрения пользователя время реакции системы, то есть время с момента возникновения удаленного запроса до момента поступления ответа на него.

• Следует максимально опираться на результаты измерения реального трафика в уже существующих локальных сетях или глобальных связях, которые могут быть использованы в качестве исходных данных для математических моделей вновь создаваемой сети. Используйте анализаторы протоколов для того, чтобы выяснить интенсивность пакетов каждого типа, их средний размер. Используйте генераторы пакетов для того, чтобы оценить предельный трафик, допустимый для имеющихся у вас мостов и маршрутизаторов, а также для того, чтобы определить средние времена фильтрации пакетов.

Итак. задача выбора глобальной связи сводится к выбору глобального канала, обладающего пропускной способностью, которая с тем или иным запасом o б ecne ч u в a л a бы требуемое время реакции для всех пользователей сети.

 

Этапы выполнения запроса

Процедура обслуживания удаленного запроса может быть представлена в виде последовательности этапов его обработки различными (программными и аппаратными) элементами сети. Рассмотрим, например, запрос на поиск записей в удаленной базе данных. Пусть сеть представляет собой два сегмента Ethernet, связанных между собой выделенной линией, и для связи локальных сегментов с глобальной линией используются маршрутизаторы. В этом случае можно выделить такие этапы обработки запроса:

• Подготовка запроса на клиентской станции.

• Передача запроса по сегменту Ethernet от клиентской станции к маршрутизатору

(при этом запрос в общем случае разбивается на несколько пакетов).

• Обработка запроса маршрутизатором сети-источника запроса.

• Передача запроса по глобальной связи.

• Обработка запроса маршрутизатором сети назначения.

• Передача запроса по сегменту Ethernet от маршрутизатора к серверу базы данных.

• Обработка запроса сервером и формирование ответа.

Время выполнения запроса равно удвоенной сумме этих времен. Учитывая, что время передачи запроса по глобальной сети, как правило, значительно превышает время выполнения остальных этапов, можно принять его в качестве грубой оценки времени выполнения запроса.

Поэтому прежде всего целесообразно оценить минимально возможное время передачи типичного пакета по глобальной связи в предположении, что эта связь является идеальной и передает полезные данные с номинальной скоростью. Чтобы представить порядок времен передачи для каналов с разной пропускной способностью, приведем результаты простейших расчетов для примера передачи пакета в 64 Кб.

                                                                                                        Таблица 17.1

Номинальная пропускная способность Время передачи
9.6 Кб/с 0.91 мин
38.4 Кб/с 0.23 мин
56.0 Кб/с 0.16 мин
112.0 Кб/с 4.7 сек
1.544 Мб/с 0.35 сек
6.312 Мб/с 0.08 сек
10 Мб/с 0.05 сек

 

Сравнивая эти цифры с типичными временами выполнения запросов приложениями (десятки миллисекунд), можно сделать вывод о том, что более тщательный анализ имеет смысл проводить, начиная со скоростей передачи выше 1 Мб/с.

Производители мостов и маршрутизаторов обычно приводят данные о том, сколько пакетов в секунду могут обработать их продукты. Этот показатель может оказаться и невостребованным, так как обычно узким местом является не производительность моста или маршрутизатора, а пропускная способность глобальной связи. Но уж если принимать во внимание производительность мостов и маршрутизаторов, то надо учитывать следующие соображения. Размер пакета, используемого при измерении производительности. часто меняется от производителя к производителю.

В таблице 17.2 приведены типичные значения скоростей обмена пакетами двух локальных сегментов Ethernet через глобальные каналы. Эта таблица дает возможность сопоставить типичные значения пропускной способности глобальных каналов связи с основной характеристикой производительности маршрутизаторов - числом пакетов, передаваемых в секунду. Данные в таблице вычислены для пакетов Ethernet минимальной длины 64 байта.

Компрессия.

Наряду с фильтрацией локальных пакетов для уменьшения нагрузки на глобальные связи применяется компрессия данных. Стандартом для мостов и маршрутизаторов является коэффициент компрессии 2:1, хотя имеются и коммерческие устройства с коэффициентом 6:1 и 8:1.

Компрессия дает хороший эффект для пакетов средних размеров и линий связи с низкой и средней пропускными способностями. Обычно компрессия используется на линиях со скоростями до 56 Кб/с.                                                                                                                                                                                      

                                                                                                    Таблица 17.2

Ho м u н a льн a я пропускная способность Пакеты в секунду
9.6 Кб/с 18
19.2 Кб/с 36
56.0 Кб/с 106
1.544 Мб/с 2909
10 Мб/с 14880

 

 

Многие приложения, например, графические пакеты, сами компрессируют данные в файлах, естественно, для таких данных компрессия не нужна. Для нескомпрессированных файлов, например, файлов баз данных, компрессия дает уменьшения объема данных на 13-20%. Текстовые файлы уменьшаются при компрессии в среднем на 25%, выполняемые файлы и другие объектные модули могут быть скомпрессированы до половины своей длины. Уже скомпрессированные файлы не могут вторично компрессироваться.

Недостатком компрессии являются дополнительные издержки времени. Мост или другое устройство должно затратить время на выбор наилучшего коэффициента компрессии, а затем сжать файл. Обычно чем выше коэффициент компрессии, тем больше времени нужно для сжатия файла. Мосты, как правило, осуществляют компрессию, но будьте осторожны - алгоритмы компрессии зависят от производителя. Файл, скомпрессированный мостом одного производителя, не может быть декомпрессирован мостом другого производителя. Следует отдавать предпочтение аппаратной компрессии, так как она гораздо быстрее.

 

Способы коммутации

Для соединения локальных сетей через глобальные в настоящее время используются три принципиально различных три типа глобальных сетей: с коммутацией каналов, выделенные линии и с коммутацией пакетов.

Выделенные линии и сети с коммутацией каналов наиболее подходят для сетей с централизованной топологией, а сети с коммутацией пакетов - для сетей с топологией "каждый-с-каждым" и смешанной топологией. С использованием выделенных линий можно также строить позвоночник частной корпоративной сети, к которому подсоединяются подсети. Если у вас имеется более четырех мест расположения филиалов, и вы хотите реализовать взаимодействие "каждый-с-каждым", то соединения типа "точка-точка" будут слишком дорогими, так как их потребуется 2", где п - количество мест расположения филиалов.

Тип глобальной сети, который наилучшим образом подходит для вашей корпоративной сети, определяют несколько факторов:

• Требуемая топология глобальных связей вашей сети: централизованная топология, топология типа "каждый-с-каждым" или смешанная топология.

• Требуемые сервисы - передача только речи и данных, передача также и видеоинформации и т.п.

• Требуемая пропускная способность д ля обеспечения нормальной работы требуемых сервисов.

• Географическое расположение соединяемых мест определяет доступные там виды глобальных сервисов.

• Финансовые средства, отведенные для глобальных сервисов.

При построении корпоративной сети можно воспользоваться услугами общественной глобальной сети. можно создать свою частную глобальную сеть и можно создать комбинацию общественной и частной глобальных сетей. Большинство предприятий используют общественные глобальные сети для передачи данных между локальными сетями. Свои собственные глобальные сети предприятие создает тогда, когда по ним должны передаваться очень важные, ответственные данные, или же когда соответствующий сервис общественных сетей недоступен. При использовании общественных глобальных сетей все заботы о передаче данных между удаленными филиалами вашей организации берет на себя фирма, предоставившая вам глобальную связь. Она решает все вопросы, связанные с выбором промежуточного маршрута и обеспечением его надежности.

Если же глобальные связи представляют для вас особую важность, и вы хотите контролировать сами каждый этап передачи данных, то вам следует рассмотреть вариант построения собственной глобальной сети или вариант, в котором предусматривается комбинация частных и общественных глобальных связей.    

Например, вы можете создать собственную сеть типа Т-1, затратив сравнительно небольшие средства. Даже для создания собственной глобальной сети предприятия обычно арендуют линии связи у фирм, специализирующихся в области телекоммуникационных связей. Если вы решили строить собственную глобальную сеть, то вам следует научиться поддерживать большое количество оборудования, которое телекоммуникационные компании уже имеют.

Итак, существует три варианта связи локальных корпоративных сетей через глобальные:

• использование общественных глобальных сетей; в этом случае необходимо приобрести и обслуживать своими силами только оборудование связи локальной сети с глобальной - например, мост, маршрутизатор, модем;

• создание полностью собственной глобальной сети, включая прокладку линий связи и установку коммутационного оборудования в центрах коммутации линий и того же оборудования связи локальной сети с глобальной;

• создание собственной глобальной сети, но на основе арендуемых линий связи, в этом случае по сравнению с предыдущим отпадает необходимость прокладывать и поддерживать линии связи.



Поделиться:


Последнее изменение этой страницы: 2021-12-15; просмотров: 93; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.19.30.232 (0.04 с.)