Задачей предмета является изучение операционных систем, предназначенных для управления аппаратными средствами вычислительных систем. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Задачей предмета является изучение операционных систем, предназначенных для управления аппаратными средствами вычислительных систем.



Задачей предмета является изучение операционных систем, предназначенных для управления аппаратными средствами вычислительных систем.

Операционная система (ОС) – обязательная часть системного программного обеспечения, обеспечивающая эффективное функционирование ПК в различных режимах, организующая выполнение программ и взаимодействие пользователя и внешних устройств с компьютером.

Появление мультипрограммных операционных систем для мэйнфреймов

Следующий важный период развития операционных систем относится к 1965-1975 годам. В это время в технической базе вычислительных машин произошел переход от отдельных полупроводниковых элементов типа транзисторов к интегральным микросхемам.

В этот период были реализованы практически все основные механизмы, присущие современным ОС: мультипрограммирование, мультипроцессирование, поддержка многотерминального многопользовательского режима, виртуальная память, файловые системы, разграничение доступа и сетевая работа. В эти годы начинается расцвет системного программирования. Революционным событием данного этапа явилась промышленная реализация мультипрограммирования.

Мультипрограммирование было реализовано в двух вариантах - в системах пакетной обработки и разделения времени. В мультипрограммном пакетном режиме процессор не простаивал, пока одна программа выполняла операцию ввода - вывода (как это происходило при последовательном выполнении программ в системах ранней пакетной обработки), а переключался на другую готовую к выполнению программу.

В мультипрограммных системах пакетной обработки пользователь по-прежнему был лишен возможности интерактивно взаимодействовать со своими программами. Другой вариант мультипрограммных систем - системы разделения времени. Этот вариант рассчитан на многотерминальные системы, когда каждый пользователь работает за своим терминалом. К этому времени можно констатировать существенное изменение в распределении функций между аппаратными и программными средствами компьютера. Операционные системы становились неотъемлемыми элементами компьютеров, играя роль "продолжения" аппаратуры.

Реализация мультипрограммирования потребовала внесения очень важных изменений в аппаратуру компьютера. В процессорах появился привилегированный и пользовательский режимы работы, специальные регистры для быстрого переключения с одной программы на другую, средства защиты областей памяти, а также развитая система прерываний. В привилегированном режиме, предназначенном для работы программных модулей операционной системы, процессор мог выполнять все команды, в том числе и те из них, которые позволяли осуществлять распределение и защиту ресурсов компьютера. Программам, работающим в пользовательском режиме, некоторые команды процессора были не доступны. Система прерываний позволяла синхронизировать работу различных устройств компьютера, работающих параллельно и асинхронно, таких как каналы ввода - вывода, диски, принтеры и т. п. Еще одной важной тенденцией этого периода является создание семейств программно-совместимых машин и операционных систем для них. Примерами семейств программно-совместимых машин, построенных на интегральных микросхемах, являются серии машин IBM/360 и IBM370 (аналоги этих семейств советского производства - машины серии ЕС), PDP-11 (советские аналоги - СМ-3, СМ-4, СМ-1420). Вскоре идея программно-совместимых машин стала общепризнанной.

Программная совместимость требовала и совместимости операционных систем. Так, разработка OS/360, объем кода для которой составил 8Мбайт, стоила компании IBM 80 миллионов долларов.

WIMP – интерфейс


Вторым этапом в развитии графического интерфейса стал "чистый" интерфейс WIMP, Этот подвид интерфейса характеризуется следующими особенностями.
  1. Вся работа с программами, файлами и документами происходит в окнах – определен-ных очерченных рамкой частях экрана.
  2. Все программы, файлы, документы, устройства и другие объекты представляются в виде значков - иконок. При открытии иконки превращаются в окна.
  3. Все действия с объектами осуществляются с помощью меню. Хотя меню появилось на первом этапе становления графического интерфейса, оно не имело в нем главенствующего значения, а служило лишь дополнением к командной строке. В чистом WIMP - интерфейсе меню становится основным элементом управления.
4. Широкое использование манипуляторов для указания на объекты. Манипулятор перестает быть просто игрушкой - дополнением к клавиатуре, а становится основным элементом управления. С помощью манипулятора УКАЗЫВАЮТ на любую область экрана, окна или иконки, ВЫДЕЛЯЮТ ее, а уже потом через меню или с использованием других технологий осуществляют управление ими.
Следует отметить, что WIMP требует для своей реализации цветной растровый дисплей с высоким разрешением и манипулятор. Также программы, ориентированные на этот вид интерфейса, предъявляют повышенные требования к производительности компьютера, объему его памяти, пропускной способности шины и т.п. Однако этот вид интерфейса наиболее прост в усвоении и интуитивно понятен. Поэтому сейчас WIMP - интерфейс стал стандартом де-факто.
Ярким примером программ с графическим интерфейсом является операционная система Microsoft Windows.

 

Речевая технология


С середины 90-х годов, после появления недорогих звуковых карт и широкого распространения технологий распознавания речи, появился так называемый "речевая технология" SILK - интерфейса. При этой технологии команды подаются голосом путем произнесения специальных зарезервированных слов - команд. Основными такими командами (по правилам системы "Горыныч") являются:

"Проснись" - включение голосового интерфейса.

"Отдыхай" - выключение речевого интерфейса.

"Открыть" - переход в режим вызова той или иной программы. Имя программы называется в следующем слове.

"Буду диктовать" - переход из режима команд в режим набора текста голосом.

"Режим команд" - возврат в режим подачи команд голосом.

и некоторые другие.

Слова должны выговариваться четко, в одном темпе. Между словами обязательна пауза. Из-за неразвитости алгоритма распознавания речи такие системы требует индивидуальной предварительной настройки на каждого конкретного пользователя.

"Речевая" технология является простейшей реализацией SILK - интерфейса.


Биометрическая технология


Эта технология возникла в конце 90-х годов XX века и на момент написания книги еще разрабатывается. Для управления компьютером используется выражение лица человека, направление его взгляда, размер зрачка и другие признаки. Для идентификации пользователя используется рисунок радужной оболочки его глаз, отпечатки пальцев и другая уникальная информация. Изображения считываются с цифровой видеокамеры, а затем с помощью специальных программ распознавания образов из этого изображения выделяются команды. Эта технология, по-видимому, займет свое место в программных продуктах и приложениях, где важно точно идентифицировать пользователя компьютера.

 

Типы интерфейсов


Интерфейсы пользователя бывают двух типов:

1) процедурно-ориентированные:

-примитивные

-меню

-со свободной навигацией

2) объектно-ориентированные:

-прямого манипулирования.

  Процедурно-ориентированный интерфейс использует традиционную модель взаимодействия с пользователем, основанную на понятиях "процедура" и "операция". В рамках этой модели программное обеспечение предоставляет пользователю возможность выполнения некоторых действий, для которых пользователь определяет соответствие данных и следствием выполнения которых является получение желаемого результата.
Объектно-ориентированные интерфейсы используют модель взаимодействия с пользова-телем, ориентированную на манипулирование объектами предметной области. В рамках этой модели пользователю предоставляется возможность напрямую взаимодействовать с каждым объектом и инициировать выполнение операций, в процессе которых взаимодействуют нес-колько объектов. Задача пользователя формулируется как целенаправленное изменение неко-торого объекта. Объект понимается в широком смысле слова - модель БД, системы и т.д. Объектно-ориентированный интерфейс предполагает, что взаимодействие с пользователем осуществляется посредством выбора и перемещения пиктограмм соответствующей объектно-ориентированной области. Различают однодокументные (SDI) и многодокументные (MDI) интерфейсы.

Процедурно-ориентированные интерфейсы:

1) Обеспечивают пользователю функции, необходимые для выполнения задач;

2) Акцент делается на задачи;

3) Пиктограммы представляют приложения, окна или операции;

4) Содержание папок и справочников отражается с помощью таблицы-списка.

Объектно-ориентированные интерфейсы:

1) Обеспечивает пользователю возможность взаимодействия с объектами;

2) Акцент делается на входные данные и результаты;

3) Пиктограммы представляют объекты;

4) Папки и справочники являются визуальными контейнерами объектов.

Примитивным называется интерфейс, который организует взаимодействие с пользовате-лем и используется в консольном режиме. Единственное отклонение от последовательного процесса, который обеспечивается данными, заключается в организации цикла для обработки нескольких наборов данных.
Интерфейс Меню. В отличие от примитивного интерфейса, позволяет пользователю выбирать операцию из специального списка, выводимого ему программой. Эти интерфейсы предполагают реализацию множества сценариев работы, последовательность действий в которых определяется пользователями. Древовидная организация меню предполагает строго ограниченную реализацию. При этом возможны два варианта организации меню:

- каждое окно меню занимает весь экран

- на экране одновременно присутствуют несколько разноуровневых меню (Windows).

В условиях ограниченной навигации, независимо от варианта реализации, поиск пункта более чем двух уровневого меню оказывается довольно сложной задачей.
Интерфейс со свободной навигацией (графический интерфейс). Поддерживает концепцию интерактивного взаимодействия с ПО, визуальную обратную связь с пользователем и воз-можность прямого манипулирования объектом (кнопки, индикаторы, строки состояния). В отличие от интерфейса Меню, интерфейс со свободной навигацией обеспечивает возмож-ность осуществления любых допустимых в конкретном состоянии операций, доступ к которым возможен через различные интерфейсные компоненты ("горячие" клавиши и т.д.). Интерфейс со свободной навигацией реализуется с использованием событийного программи-рования, что предполагает применение визуальных средств разработки (посредством сообщений).

(http://gendocs.ru/v10991)

 

БИБЛИОГРАФИЧЕСКИЙ СПИСОК


  1. Т.Б. Большаков, Д.В. Иртегов. Оперционные системы[Электронный ресурс]. Материалы сайта http: // www. citforum. ru / operating_systems / ois / introd. shtml.

  2. Методы и средства разработки пользовательского интерфейса: современное состояние, Клещев А.С., Грибова В.В., 2001[Электронный ресурс]. Материалы сайта http: // www. swsys. ru / index. php? page=article&id=765.

  3. Дейтел Г. Введение в операционные системы. В двух томах / Пер, с англ. Л.А. Теп-лицкого, А.Б. Ходулева, В.С. Штаркмана под ред.В.С. Штаркмана.[текст] - М.: Мир, 1987.

  4. Программная инженерия. Стандартизация пользовательского интерфейса. Евгений Волченков. М, 2002[Электронный ресурс]. Материалы сайта http: // tizer. adv. vz. ru.

 

Т е м а 1.2. Структура операционных систем

Структура операционных систем. Классификация операционных систем по различным критериям: количеству пользователей, обрабатываемых процессов, разрядности кода, типу интерфейса, использования ресурсов, методу организации вычислительных процессов.

 

Основным предназначением ОС является организация эффективных и надежных вычислений, создание различных интерфейсов для взаимодействия с этими вычислениями и с самой вычислительной системой.

Широко известно высказывание, согласно которому любая наука начинается с классификации. Само собой, что вариантов классификации может быть очень мно­го, здесь все будет зависеть от выбранного признака, по которому один объект мы будем отличать от другого. Однако, что касается ОС, здесь уже давно сформирова­лось относительно небольшое количество классификаций:

§ по назначению,

§ по режиму обработки задач,

§ по способу взаимодействия с системой,

§ по способам построения (архитектурным особенностям системы).

Прежде всего, традиционно различают ОС общего и специального назначения.

ОС специального назначения, в свою очередь, подразделяются на ОС для носимых микрокомпьютеров и различных встроенных систем, организации и ведения баз данных, решения задач реального времени и т. п. Еще не так давно операционные системы для персональных компьютеров относили к ОС специального назначе­ния. Сегодня современные мультизадачные ОС для персональных компьютеров уже многими относятся к ОС общего назначения, поскольку их можно использо­вать для самых разнообразных целей — так велики их возможности.

По режиму обработки задач различают ОС, обеспечивающие однопрограммный и мультипрограммный (мультизадачный) режимы.

К однопрограммным ОС отно­сится, например, всем известная, хотя нынче уже практически и не используемая MS DOS. Напомним, что под мультипрограммированием понимается способ организации вычислений, когда на однопроцессорной вычислительной системе созда­ется видимость одновременного выполнения нескольких программ. Любая задержка в решении программы (например, для осуществления операций ввода-вывода данных) используется для выполнения других (таких же либо менее важных) программ. Иногда при этом говорят о мультизадачном режиме, причем, вообще говоря, термины «мультипрограммный режим» и «мультизадачный режим» — это не синонимы, хотя и близкие понятия. Основное принципиальное отличие этих терминов заключается в том, что мультипрограммный режим обеспечивает параллельное выполнение нескольких приложений, и при этом программисты, создающие эти программы, не должны заботиться о механизмах организации их параллельной работы (эти функции берет на себя сама ОС; именно она распределяет между выполняющимися приложениями ресурсы вычислительной системы, осуществляет необходимую синхронизацию вычислений и взаимодействие). Мультизадачный режим, наоборот, предполагает, что забота о параллельном выполнении и взаимодействии приложений ложится как раз на прикладных программистов. Хотя в современной технической и тем более научно-популярной литературе об этом различии часто забывают и тем самым вносят некоторую путаницу.

Можно, однако, заметить, что современные ОС для персональных компьютеров реализуют и мультипрограммный, и мультизадачный режимы.

Если принимать во внимание способ взаимодействия с компьютером, то можно говорить о диалоговых системах и системах пакетной обработки. Доля последних хоть и не убывает в абсолютном исчислении, но в процентном отношении она существенно сократилась по сравнению с диалоговыми системами.

При организации работы с вычислительной системой в диалоговом режиме можно говорить об однопользовательских (однотерминальных) и мультитерминальных ОС.

В мультитерминальных ОС с одной вычислительной системой одновременно могут работать несколько пользователей, каждый со своего терминала. При этом у пользователей возникает иллюзия, что у каждого из них имеется собственная вычислительная система.

Очевидно, что для организации мультитерминального доступа к вычислительной системе необходимо обеспечить мультипрограммный режим работы. В качестве одного из примеров мультитерминальных операционных систем для персональных компьютеров можно назвать Linux. Некая имитация мультитерминальных возможностей имеется и в системе Windows XP. В этой операционной системе каждый пользователь после регистрации (входа в систему) получает свою виртуальную машину. Если необходимо временно предоставить компьютер другому пользователю, вычислительные процессы первого можно не завершать, а просто для этого другого пользователя система создает новую виртуальную машину. В результате компьютер будет выполнять задачи и первого, и второго пользователя. Количество параллельно работающих виртуальных машин определяется имеющимися ресурсами.

Основной особенностью операционных систем реального времени (ОСРВ) является обеспечение обработки поступающих заданий в течение заданных интервалов времени, которые нельзя превышать. Поток заданий в общем случае не является планомерным и не может регулироваться оператором (характер следования событий можно предсказать лишь в редких случаях), то есть задания поступают в непредсказуемые моменты времени и без всякой очередности. В то время как в ОС, не предназначенных для решения задач реального времени, имеются некоторые накладные расходы процессорного времени на этапе инициирования задач (в ходе которого ОС распознает все пожелания пользователей относительно решения своих задач, загружает в оперативную память нужную программу и выделяет другие необходимые для ее выполнения ресурсы), в ОСРВ подобные затраты могут отсутствовать, так как набор задач обычно фиксирован, и вся информация о задачах известна еще до поступления запросов. Для подлинной реализации режима реального времени необходима (хотя этого и недостаточно) организация мультипрограммирования. Мультипрограммирование является основным средством повышения производительности вычислительной системы, а для решения задач реального времени производительность становится важнейшим фактором. Лучшие характеристики по производительности для систем реального времени обеспечиваются однотерминальными ОСРВ. Средства организации мультитерминального режима всегда замедляют работу системы в целом, но расширяют функциональные возможности системы. Одной из наиболее известных ОСРВ для персональных компьютеров является ОС QNX.

По основному архитектурному принципу операционные системы разделяются на микроядерные и макроядерные (монолитные).

В некоторой степени это разделение тоже условно, однако можно в качестве яркого примера микроядерной ОС привести ОСРВ QNX, тогда как в качестве монолитной можно назвать Windows 95/98 или ОС Linux. Если ядро ОС Windows мы не можем изменить, нам недоступны его исходные коды и у нас нет программы для сборки (компиляции) этого ядра, то в случае с Linux мы можем сами собрать то ядро, которое нам необходимо, включив в него те программные модули и драйверы, которые мы считаем целесообразным включить именно в ядро (ведь к ним можно обращаться и из ядра).

 

Т е м а 1.3 Виды программ операционной системы

Управляющая программа. Системные обрабатывающие программы. ОС в процессе программирования.

 

ОС – комплекс программ, которые обеспечивают управление аппаратурой ЭВМ, планирование эффективного использования ее ресурсов, автоматизацию процесса подготовки программ и прохождения их в ЭВМ.

ОС является посредником между ЭВМ и человеком (пользователь, программист, инженер, оператор…). Другими словами ОС – логическое расширение аппаратуры в сторону человека, позволяя перейти от физического уровня аппаратуры к более высокому логическому уровню.

ОС осуществляет достаточно сложный процесс управления ресурсами ЭВМ, все нюансы которого скрыты от пользователя. Взаимодействие с программистами, операторами и т.д. осуществляется через интерфейс пользователя, который поддерживается ОС.

Компонентный состав ОС определяется набором функций, для выполнения которых она предназначена. Все программы ОС можно разбить на две группы: управляющая программа и системные обрабатывающие программы.

Управляющая программа – обязательный компонент любой ОС. Ее функции – планирование прохождения непрерывного потока заданий, управление распределением ресурсов, реализация принятых методов организации данных, управление операциями ввода-вывода (В-В), организация мультипрограммной работы, управление работоспособностью системы после сбоев и др.

Управляющая программа состоит из ряда компонентов, среди которых следует выделить четыре основных.

Управление статическими ресурсами (управление заданиями) осуществляет предварительное планирование потока заданий для выполнения и статич. распределение ресурсов между одновременно выполняемыми заданиями в процессе подготовки к выполнению. К статическим ресурсам относят разделы памяти (основной, виртуальной, внешней), доступные для использования устройства, допускающие только монопольное использование, наборы данных и др. такие ресурсы закрепляются за заданием или его частью с момента инициализации до момента завершения и используются обычно в монопольном порядке.

Управление динамическими ресурсами (управление задачами) осуществляет динамическое распределение ресурсов системы между несколькими задачами, решаемых одновременно в мультипрограммном режиме для выполняемого потока заданий. Входящие в ядро ОС и постоянно находящиеся в ОП.

Управление данными обеспечивает все операции В-В (т.е. обмен между ОП и ПУ) на физическом и логическом уровнях. Оно включает в себя ряд служб, обеспечивающих выполнение таких функций, как управление каталогом, управление распределением памяти прямого доступа, обработку ошибок В-В и др., реализует различные структуры данных и возможность доступа к ним.

Управление восстановлением регистрирует машинные сбои и отказы и восстанавливает работоспособность системы после сбоев, если это возможно.

Системные обрабатывающие программы выполняются под управлением управляющей системы, так же как и любая обрабатывающая программа, в т.ч. пользовательская. Это значит, что она в полном объеме может пользоваться услугами управляющей программы и не может самостоятельно выполнять системные функции. Так, обрабатывающая программа не может самостоятельно осуществлять собственный В-В. операции В-В обрабатывающая программа реализует с помощью запросов к управляющей программе, которая и выполняет непосредственно ввод и вывод данных. Централизованное выполнение системных функций управляющей программой позволяет выполнять их более эффективно и обеспечивает высокий уровень услуг для пользователя.

К системным обрабатывающим программам относятся программы, входящие в состав ОС: ассемблеры, трансляторы, редакторы связей, загрузчик, программы обслуживания и ряд других. Трансляторы, редактор связей и загрузчик образуют основу систем программирования, построенных на базе ОС.

Вопросы и упражнения

Утилиты используются для

§ Мониторинга показателей датчиков и производительности оборудования — мониторинг температур процессора, видеоадаптера; чтение S.M.A.R.T. жёстких дисков;

§ Управления параметрами оборудования — ограничение максимальной скорости вращения CD-привода; изменение скорости вращения вентиляторов.

§ Контроля показателей — проверка ссылочной целостности; правильности записи данных.

§ Расширения возможностей — форматирование и/или переразметка диска с сохранением данных, удаление без возможности восстановления.

Типы утилит

§ Дисковые утилиты

- Дефрагментаторы

Дефрагмента́ция — процесс обновления и оптимизации логической структуры раздела диска с целью обеспечить хранение файлов в непрерывной последовательности кластеров. После дефрагментации ускоряется чтение и запись файлов, а следовательно и работа программ, ввиду того, что последовательные операции чтения и записи выполняются быстрее случайных обращений (например, для жесткого диска при этом не требуется перемещение головки). Другое определение дефрагментации: перераспределение файлов на диске, при котором они располагаются в непрерывных областях.

Длинные файлы занимают несколько кластеров. Если запись производится на незаполненный диск, то кластеры, принадлежащие одному файлу, записываются подряд. Если диск переполнен, на нём может не быть цельной области, достаточной для размещения файла. Тем не менее, файл все-таки запишется, если на диске много мелких областей, суммарный размер которых достаточен для записи. В этом случае файл записывается в виде нескольких фрагментов.

Процесс разбиения файла на небольшие фрагменты при записи на диск называется фрагментацией. Если на диске много фрагментированных файлов, скорость чтения носителя уменьшается, поскольку поиск кластеров, в которых хранятся файлы, на жёстких дисках требует времени. На флеш-памяти, например, время поиска не зависит от расположения секторов, и практически равно нулю, поэтому для них дефрагментация не требуется.

Некоторое ПО требует, чтобы определённые файлы в обязательном порядке хранились в последовательно расположенных секторах (например, встроенный эмулятор CD-ROM в приводе Zalman VE-200 предъявляет такое требование к файлам образов). Даже если в такой привод будет установлен твердотельный накопитель, очевидно, дефрагментация ему всё-таки понадобится.

Дефрагментация чаще всего используется для таких файловых систем, как File Allocation Table для MS-DOS и Microsoft Windows, так как в программах для работы с ними обычно не предусмотрено никаких средств для предотвращения фрагментации, и она появляется даже на почти пустом диске и небольшой нагрузке.

Помимо замедления компьютера в работе с файловыми операциями (таких как чтение и запись), фрагментация файлов негативно сказывается на «здоровье» жёсткого диска, так как заставляет постоянно перемещаться позиционирующие головки диска, которые осуществляют чтение и запись данных. Для устранения проблемы фрагментации существуют программы-дефрагментаторы, принцип работы которых заключается в «сборке» каждого файла из его фрагментов. Общим недостатком таких программ является их медленная работа — процесс дефрагментации обычно занимает очень много времени (до нескольких часов).

 

- Проверка диска — поиск неправильно записанных либо повреждённых различным путём файлов и участков диска и их последующее удаление для эффективного использования дискового пространства.

- Очистка диска — удаление временных файлов, ненужных файлов, чистка «корзины».

- Разметка диска — деление диска на логические диски, которые могут иметь различные файловые системы и восприниматься операционной системой как несколько различных дисков.

- Резервное копирование — создание резервных копий целых дисков и отдельных файлов, а также восстановление из этих копий.

§ Резервное копирование данных (Резервное дублирование данных) — процесс создания копии данных

§ Восстановление данных — процесс восстановления в оригинальном месте

Резервное копирование необходимо для возможности быстрого и недорогого восстановления информации (документов, программ, настроек и т. д.) в случае утери рабочей копии информации по какой-либо причине.

Кроме этого решаются смежные проблемы:

§ Дублирование данных

§ Передача данных и работа с общими документами

Требования к системе резервного копирования

§ Надёжность хранения информации — обеспечивается применением отказоустойчивого оборудования систем хранения, дублированием информации и заменой утерянной копии другой в случае уничтожения одной из копий (в том числе как часть отказоустойчивости).

§ Простота в эксплуатации — автоматизация (по возможности минимизировать участие человека: как пользователя, так и администратора).

§ Быстрое внедрение — простая установка и настройка программ, быстрое обучение пользователей.

Виды резервного копирования

Одноразовое копирование

Простейшая схема, не предусматривающая ротации носителей. Все операции проводятся вручную. Перед копированием администратор задает время начала резервирования, перечисляет файловые системы или каталоги, которые нужно копировать. Эту информацию можно сохранить в базе данных, чтобы её можно было использовать снова. При одноразовом копировании чаще всего применяется полное копирование.

Простая ротация

Простая ротация подразумевает, что некий набор лент используется циклически. Например, цикл ротации может составлять неделю, тогда отдельный носитель выделяется для определенного рабочего дня недели. Недостаток данной схемы — она не очень подходит для ведения архива, поскольку количество носителей в архиве быстро увеличивается. Кроме того, инкрементальная/дифференциальная запись проводится на одни и те же носители, что ведет к их значительному износу и, как следствие, увеличивает вероятность отказа.

 «Дед, отец, сын»

Данная схема имеет иерархическую структуру и предполагает использование комплекта из трех наборов носителей. Раз в неделю делается полная копия дисков компьютера («отец»), ежедневно же проводится инкрементальное (или дифференциальное) копирование («сын»). Дополнительно раз в месяц проводится еще одно полное копирование («дед»). Состав ежедневного и еженедельного набора постоянен. Таким образом, по сравнению с простой ротацией в архиве содержатся только ежемесячные копии плюс последние еженедельные и ежедневные копии. Недостаток данной схемы состоит в том, что в архив попадают только данные, имевшиеся на конец месяца, а также износ носителей.

«Ханойская башня»

Схема призвана устранить некоторые из недостатков схемы простой ротации и ротации «Дед, отец, сын». Схема построена на применении нескольких наборов носителей. Каждый набор предназначен для недельного копирования, как в схеме простой ротации, но без изъятия полных копий. Иными словами, отдельный набор включает носитель с полной недельной копией и носители с ежедневными инкрементальными (дифференциальными) копиями. Специфическая проблема схемы «ханойская башня» — ее более высокая сложность, чем у других схем.

«10 наборов»

Данная схема рассчитана на десять наборов носителей. Период из сорока недель делится на десять циклов. В течение цикла за каждым набором закреплен один день недели. По прошествии четырехнедельного цикла номер набора сдвигается на один день. Иными словами, если в первом цикле за понедельник отвечал набор номер 1, а за вторник — номер 2, то во втором цикле за понедельник отвечает набор номер 2, а за вторник — номер 3. Такая схема позволяет равномерно распределить нагрузку, а следовательно, и износ между всеми носителями.

Схемы «Ханойская башня» [источник не указан 301 день] и «10 наборов» используются нечасто, так как многие системы резервирования их не поддерживают.

Хранение резервной копии

§ Лента стримера — запись резервных данных на магнитную ленту стримера;

§ «Облачный» бэкап» — запись резервных данных по «облачной» технологии через онлайн-службы специальных провайдеров;

§ DVD или CD — запись резервных данных на компактные диски;

§ HDD — запись резервных данных на жёсткий диск компьютера;

§ LAN — запись резервных данных на любую машину внутри локальной сети;

§ FTP — запись резервных данных на FTP-серверы;

§ USB — запись резервных данных на любое USB-совместимое устройство (такое, как флэш-карта или внешний жёсткий диск);

§ ZIP, JAZ, MO — резервное копирование на дискеты ZIP, JAZ, MO. (http://ru.wikipedia.org)

 

- Сжатие дисков — сжатие информации на дисках для увеличения вместимости жёстких дисков.

§ Утилиты работы с реестром

§ Утилиты мониторинга оборудования

§ Тесты оборудования

 

Драйвер - комплекс програм м, выполняющих интерфейсные и управляющие функции.
Драйвер (англ. driver — водитель, ведущий) — компьютерная программа, помогающая операционной системе работать с к.-л. устройством (напр., управлять устройствами ввода-вывода, клавиатурой, принтером и т. д.)

Загружаемые драйверы устройств.

1. ANSI. SYS – расширенное управление клавиатурой и дисплеем. Обеспечивает дополнительные функции управления дисплеем:

       - возможность чтения текущего положения курсора.

       - установка цвета символов и фона,

       - позиционирование курсора,

       - переназначение клавиш.

 

Формат директивы подключения драйвера

Device = диск:\маршрут\ ansi. sys / X / K / R

 

Ключи:

/Х   переназначение отдельных клавиш (правые Alt и Ctrl клавиши управления курсором) на дополнительной клавиатуре.

/К   использование алгоритма работы со 101 –клавишной клавиатурой, с

83 – клавишной клавиатурой.

/R   данный драйвер будет производить нормализацию строк прокрутки при работе программ чтения с экрана текстов, которые могут изменять строки прокрутки.

 

2. DBLSPACE. SYS – управление месторасположением в памяти модуля DBLSPACE.BIN, который обеспечивает доступ к сжатым дискам (командой dblspace осуществляется сжатие данных на жестких или гибких магнитных дисках для увеличения свободного пространства и создание дополнительных дисков, работающих под управлением программы Double Space).

 

Формат директивы подключения драйвера:

Device = диск:\ маршрут \ dblspace.sys /MOVE/NOHMA

 

Ключи:

MOVE – перемещение модуля DBLSPACE.BIN в младшие адреса основной памяти, так как при загрузке ОС модуль DBLSPACE.BIN загружается в старшие адреса основной памяти.

NOHMA – предотвращение перемещения модуля DBLSPACE.BIN из основной памяти в область старшей памяти

 

3. DISPLAY. SYS - расширение возможностей стандартного драйвера консоли CON, входящего в состав DOS, или ANSI. SYS, если он установлен. Этот драйвер применяется для переключения кодовых страниц командой DOS MODE.

 

       Формат директивы подключения драйвера:

       Device = диск:\маршрут\ display. sys con = (тип, ном_стр, кол_стр, кол_шр)

Параметры:

Тип – тип дисплея, установленного на компьютере.

ном_стр – номер кодовой страницы, являющейся аппаратно поддерживаемой для данного типа дисплея.

кол_стр – указание количества страниц, которые будут использоваться при выводе текстовой информации на экран. По умолчанию количество страниц установлено для адаптера EGA равным 6, а для адаптеров LCD равным 1.

кол_шр – количество таблиц шрифтов, аппаратно поддерживаемых для каждой кодовой таблицы.

 

1. DRIVER. SYS – определение дополнительных НГМД, непосредственно не поддерживаемых DOS.

    

Формат директивы подключения:

       Device = диск:\маршрут\ driver. sys / D:номер/ C / F:специф/ H:голов / S:секторов/ T:дорож

 

D:номер – номер физического накопителя на гибких дисках, номер накопителя может задаваться в диапазоне от 0 до 127.

F:специф – спецификатор дисковода, для указания типа используемого накопителя. Использование ключа /F: делает необязательным использование ключей /T:, /H:, /S:.

H:голов – число головок накопителя. По умолчанию число головок равно 2.

S:секторов – число секторов на дорожке.

T:дорож – количество дорожек на одной стороне.

 

2. EMM 386. EXE – поддержка расширенной памяти и эмуляция дополнительной памяти как расширенной, а также дает возможность загрузки программ и драйверов устройств в область старшей памяти (UMB). (описание данного драйвера в методичке)

 

3. HIMEM. SYS – поддержка дополнительной памяти. (описание данного драйве



Поделиться:


Последнее изменение этой страницы: 2021-12-15; просмотров: 79; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.133.137.17 (0.15 с.)