Понятие науки. Классификация наук. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Понятие науки. Классификация наук.



Понятие науки. Классификация наук.

Понятие «наука» имеет несколько основных значений.

· Во-первых, под наукой понимается сфера человеческой деятельности, направленной на выработку и систематизацию новых знаний о природе, обществе, мышлении и познании окружающего мира.

· Во втором значении наука выступает как результат этой деятельности – система полученных научных знаний.

· В-третьих, наука понимается как одна из форм общественного сознания, социальный институт.

Непосредственная цель науки – постижение объективной истины, полученной как результат знаний об объективном и о субъективном мире.

К естественным наукам относятся науки:

· О космосе, его строении, развитии (астрономия, космология, и проч.);

· Земле (геология, геофизика, и др.);

· Физических, химических, биологических системах и процессах, формах движения материи (физика и т. п.);

· Человеке как биологическом виде, его происхождении и эволюции (анатомия и т. д.).

Технические науки содержательно основываются на естественных науках.

· Они изучают различные формы и направления развития техники (радиотехника, электротехника и проч.).

Социальные науки также имеют ряд направлений и изучают общество (экономика, социология, политология, юриспруденция и т. п.). Гуманитарные науки — науки о духовном мире человека, об отношении к окружающему миру, обществу, себе подобным (педагогика, психология,).

Научная картина мира.

Научная картина мира —особая форма систематизации знаний, качественное обобщение и мировоззренческий синтез различных научных теорий. Будучи целостной системой представлений об общих свойствах и закономерностях объективного мира, научная картина мира существует как сложная структура, включающая в себя в качестве составных частей общенаучную картину мира и картины мира отдельных наук (физическая, биологическая, геологическая и т. п.). Картины мира отдельных наук, в свою очередь, включают в себя соответствующие многочисленные концепции — определённые способы понимания и трактовки каких-либо предметов, явлений и процессов объективного мира, существующие в каждой отдельной науке.

Научная картина мира — система представлений человека о свойствах и закономерностях действительности (реально существующего мира), построенная в результате обобщения и синтеза научных понятий и принципов. Использует научный язык для обозначения объектов и явлений материи. Это множество теорий в совокупности описывающих известный человеку природный мир, целостная система представлений об общих принципах и законах устройства мироздания. Картина мира - системное образование, поэтому её изменение нельзя свести ни к какому единичному (пусть и самому крупному и радикальному) открытию. Речь обычно идет о целой серии взаимосвязанных открытий (в главных фундаментальных науках), которые почти всегда сопровождаются радикальной перестройкой метода исследования, а также значительными изменениями в самих нормах и идеалах научности.

Различают:

•общенаучную картину мира

•естественнонаучную картину мира и социально-научную картину мира

•специальную (частную, локальную) научную картину мира.

Третий закон Ньютона

Материальные точки взаимодействуют друг с другом силами, имеющими одинаковую природу, направленными вдоль прямой, соединяющей эти точки, равными по модулю и противоположными по направлению:

{\displaystyle {\vec {F}}_{2\to 1}=-{\vec {F}}_{1\to 2}.}

 

F 2 — Сила действующая на 2 предмет

F 1 — Сила действующая на 1 предмет

Эти Силы:

- действуют вдоль одной прямой;
- направлены в противоположные стороны;
- равны по величине;
- приложены к разным телам, поэтому не уравновешивают друг друга;
- одинаковой природы.

 

Принцип дальнодействия.

Принцип дальнодействия гласит, что если тело, находящееся в опред. точке, действует на другое тело, то другое тело, находящееся в другой точке, испытывает это воздействие в этот момент.

Принцип дальнодействия утвердился в физике также по тому, что гравитационное взаимодействие макроскопических объектов незаметно, поскольку притяжение слишком слабо, чтобы его ощутить.

Формулировка 1

Законы природы, по которым изменятся состояния физических систем, не зависят от того, к какой из инерциальных систем отсчета относятся эти изменения.

Формулировка 2

Все физические процессы в инерциальных системах отсчёта протекают одинаково, независимо от того, неподвижна ли система или она находится в состоянии равномерного и прямолинейного движения.

Принцип относительности Энштейна представляет собой более общее определение принципа относительности Галилея. Если принцип относительности галилея был сформулирован только для класической механики, то принцип относительности Энштейна касается всех физических процессов происходящих в природе.

Классическая генетика

В начале XX века работы Менделя вновь привлекли внимание в связи с исследованиями Карла Корренса, Эриха фон Чермака и Гуго Де Фриза по гибридизации растений, в которых были подтверждены основные выводы о независимом наследовании признаков и о численных соотношениях при «расщеплении» признаков в потомстве.

Вскоре английский натуралист Уильям Бэтсон ввёл в употребление название новой научной дисциплины: генетика (в 1905 г. в частном письме и в 1906 г. публично). В 1909 году датским ботаником Вильгельмом Йоханнсеном введён в употребление термин «ген».

Важным вкладом в развитие генетики стала хромосомная теория наследственности, разработанная, прежде всего, благодаря усилиям американского генетика Томаса Ханта Моргана и его учеников и сотрудников, избравших объектом своих исследований плодовую мушку Drosophila

melanogaster. Изучение закономерностей сцепленного наследования позволило путем анализа результатов скрещиваний составить карты расположения генов в «группах сцепления» и сопоставить группы сцепления с хромосомами (1910—1913 гг.).

Молекулярная генетика

Эпоха молекулярной генетики начинается с появившихся в 1940—1950-х гг. работ, доказавших ведущую роль ДНК в передаче наследственной информации. Важнейшими шагами стали расшифровка структуры ДНК, триплетного кода, описание механизмов биосинтеза белка, обнаружение рестриктаз и секвенирование ДНК.

Учение о ноосфере.

Основные концепции ноосферы В.И.Вернадского:

 В 1923 году Вернадский в своих лекциях по геохимии, прочитанных в Париже, впервые указал на явление дисимметрии нашей планеты на примере "подвижной части земной коры" - астеносферы в районе Тихого океана: " Существование дисимметрии (не сплошных оболочек) указывает, что их происхождение тесно связано с геологическими явлениями в истории нашей планеты, имеющих планетарный характер. Оно отражается коренным образом на всех явлениях, имеющих место на Земле, и на всех исканиях, с Землей связанных" (В.И. Вернадский). Вернадский впервые получил количественный показатель, подтверждающий дисимметрию планеты и указал на возможность нахождения "дисимметричных явлений" даже в Космосе. Он так же отмечал, что особую роль в биосфере играют биологические круговороты, где важнейшим процессом является фотосинтез, осуществляемый растительностью планеты, которая оказывает влияние на все компоненты природного комплекса биосферы - атмосферу, гидросферу, почву, животный мир. Велика роль растений в жизни человеческого общества. Они создают необходимую среду существования и снабжают ее различными веществами. Перенос вещества и энергии осуществляется затем посредством пищевых цепей.

Солнечно-земные связи

 Уже первые автоматические космические аппараты, вышедшие за пределы атмосферы Земли, нашли в межпланетном пространстве сгусток исходящих от Солнца заряженных частиц – протонов, электронов, a-частиц. Этот сгусток, обтекающий Землю с сверхзвуковыми скоростями 400 – 800 км/с, получил заглавие «солнечного ветра». Частицы солнечного ветра, вытекающие из одного и того же места Солнца, соединены друг с другом. Из-за вращения Солнца магнитные силовые полосы межпланетного поля, вдоль которых распространяется солнечный ветер, зависящий от уровня солнечной активности, дозволил объяснить детали неких действий. Возник ключ к пониманию того, каким образом солнечная деятельность может влиять на погоду, а совместно с тем на растительность и жизнедеятельность человеческого организма.

Солнце влияет на следующие причины:

 -эпидемиологическую обстановку на Земле

 -количество различных стихийных бедствий(тайфуны, землетрясения, наводнения и т.д.) -на количество авто и железнодорожных аварий (Максимум всего этого приходится на годы активного Солнца)

К примеру, А.Л. Чижевскому изучал связь роста солнечной активности с вспышками эпидемий неких болезней. Он собрал подробные сведения о периодичности эпидемических заболеваний и сопоставил их с данными о солнечной активности. На основании выведенной связи А.Л. Чижевский в 1929 году предпринял попытку предсказать некие эпидемии на 35 лет вперёд. Результаты его прогноза поразительны. Семь из восьми предсказанных Чижевским эпидемий гриппа вправду произошли. Для астрономов и геофизиков в наши дни нет колебаний, что принципиальные солнечно- земные связи есть. Их влияние может быть различно в зависимости от состояния солнечной активности, и от положения Земли относительно Солнца.

Весь мир, вся живая и неживая природа находится в развитии. Ни какое развитие не может проходить гладко и потому протекает в борьбе. Предсказание грядущего – это основная задача науки.

46.Строение звезд

Звезда - раскаленный газовый шар. В каждой точке внутри звезды действует сила давления газа, которая старается расширить звезду. Но в каждой точке ей противодействует сила тяжести вышележащих слоев, пытающиеся сжать звезду. Звезда устойчива. Это означает, что обе силы уравновешивают друг друга. А так как с глубиной вес вышележащих слоев увеличивается, то давление и температура возрастают к центру звезды.

Звезда излучает энергию, вырабатываемую в ее недрах. Температура в звезде распределена так, что в любом слое в каждый момент времени энергия, получаемая от нижележащего слоя, равняется энергии, отдаваемой слою вышележащему. Сколько энергии образуется в центре звезды, столько же должно излучаться ее поверхностью.

Лучи, испускаемые звездой, получают свою энергию в недрах, где располагается ее источник, и продвигаются через всю толщу звезды наружу, оказывая давление на внешние слои. Путь каждого луча сложен и напоминает запутанную зигзагообразную кривую. Излучение, покидающее поверхность звезды качественно отличается от излучения, рождающегося в источнике звездной энергии.

Оценки температуры и плотности в недрах звезд получают теоретическим путем. Определенные таким образом температуры в центральных областях звезд составляют от 10 млн. градусов для звезд легче Солнца до 30 млн. градусов для гигантских звезд. Температура в центре Солнца - около 15 млн. градусов.

При таких температурах вещество в звездных недрах почти полностью ионизировано.

Температура внутри звезды тем ниже, чем меньше его средняя молекулярная масса. Чем больше водорода и гелия по сравнению с более тяжелыми элементами, тем ниже температура в центре звезды.

Эволюция звезд

Хотя по человеческой шкале времени звезды и кажутся вечными, они, подобно всему сущему в природе, рождаются, живут и умирают. Согласно общепринятой гипотезе газопылевого облака звезда зарождается в результате гравитационного сжатия межзвездного газопылевого облака. По мере уплотнения такого облака сначала образуется протозвезда, температура в ее центре неуклонно растет, пока не достигает предела, необходимого для того, чтобы скорость теплового движения частиц превысила порог, после которого протоны способны преодолеть макроскопические силы взаимного электростатического и вступить в реакцию термоядерного синтеза.

В результате многоступенчатой реакции термоядерного синтеза из четырех протонов в конечном итоге образуется ядро гелия (2 протона + 2 нейтрона) и выделяется целый фонтан разнообразных элементарных частиц. В конечном состоянии суммарная масса образовавшихся частиц меньше массы четырех исходных протонов, а значит, в процессе реакции выделяется свободная энергия. Из-за этого внутренне ядро новорожденной звезды быстро разогревается до сверхвысоких температур, и его избыточная энергия начинает выплескиваться по направлению к ее менее горячей поверхности — и наружу. Одновременно давление в центре звезды начинает расти. Таким образом, «сжигая» водород в процессе термоядерной реакции, звезда не дает силам гравитационного притяжения сжать себя до сверхплотного состояния, противопоставляя гравитационному коллапсу непрерывно возобновляемое внутреннее термическое поле.

Рано или поздно, однако, любая звезда израсходует весь пригодный для сжигания в своей термоядерной топке водород. Что дальше? Это также зависит от массы звезды. Солнце (и все звезды, не превышающие его по массе более чем в восемь раз) заканчиваю свою жизнь весьма банальным образом. По мере истощения запасов водорода в недрах звезды силы гравитационного сжатия, терпеливо ожидавшие этого часа с самого момента зарождения светила, начинают одерживать верх — и под их воздействием звезда начинает сжиматься и уплотняться. Этот процесс приводит к двоякому эффекту: Температура в слоях непосредственно вокруг ядра звезды повышается до уровня, при котором содержащийся там водород вступает, наконец, в реакцию термоядерного синтеза с образованием гелия. В то же время температура в самом ядре, состоящем теперь практически из одного гелия, повышается настолько, что уже сам гелий — своего рода «пепел» затухающей первичной реакции нуклеосинтеза — вступает в новую реакцию термоядерного синтеза: из трех ядер гелия образуется одно ядро углерода. Этот процесс вторичной реакции термоядерного синтеза, топливом для которого служат продукты первичной реакции, — один из ключевых моментов жизненного цикла звезд.

При вторичном сгорании гелия в ядре звезды выделяется так много энергии, что звезда начинает буквально раздуваться. При этом совокупная энергия излучения звезды остается примерно на том же уровне, что и в течение основной фазы ее жизни, но, поскольку излучается эта энергия теперь через значительно большую площадь поверхности, внешний слой звезды остывает до красной части спектра. Звезда превращается в красный гигант.

Для звезд класса Солнца после истощения топлива, питающего вторичную реакцию нуклеосинтеза, снова наступает стадия гравитационного коллапса — на этот раз окончательного. Температура внутри ядра больше не способна подняться до уровня, необходимого для начала термоядерной реакции следующего уровня.. Состояние звезды стабилизируется, и она превращается в вырожденного белого карлика, который будет излучать в пространство остаточное тепло, пока не остынет окончательно.

Звезды более массивные, нежели Солнце, ждет куда более зрелищный конец. После сгорания гелия их масса при сжатии оказывается достаточной для разогрева ядра и оболочки до температур, необходимых для запуска следующих реакций. При этом при начале каждой новой реакции в ядре звезды предыдущая продолжается в ее оболочке. В результате массивная звезда постепенно накапливает внутри себя железное ядро, не способное послужить топливом ни для каких дальнейших ядерных реакций.

Как только температура и давление внутри ядра достигают определенного уровня, электроны начинают вступать во взаимодействие с протонами ядер железа, в результате чего образуются нейтроны. И за очень короткий отрезок времени —свободные на протяжении всей предыдущей эволюции звезды электроны буквально растворяются в протонах ядер железа, всё вещество ядра звезды превращается в сплошной сгусток нейтронов и начинает стремительно сжиматься в гравитационном коллапсе, поскольку противодействовавшее ему давление вырожденного электронного газа падает до нуля. Внешняя оболочка звезды, из под которой оказывается выбита всякая опора, обрушивается к центру. Энергия столкновения обрушившейся внешней оболочки с нейтронным ядром столь высока, что она с огромной скоростью отскакивает и разлетается во все стороны от ядра — и звезда буквально взрывается в ослепительной вспышке сверхновой звезды..

После вспышки сверхновой и разлета оболочки у звезд массой порядка 10-30 солнечных масс продолжающийся гравитационный коллапс приводит к образованию нейтронной звезды. Наконец, если масса ядра звезды превышает 30 солнечных масс, ничто не в силах остановить ее дальнейший гравитационный коллапс, и в результате вспышки сверхновой образуется черная дыра.

Понятие науки. Классификация наук.

Понятие «наука» имеет несколько основных значений.

· Во-первых, под наукой понимается сфера человеческой деятельности, направленной на выработку и систематизацию новых знаний о природе, обществе, мышлении и познании окружающего мира.

· Во втором значении наука выступает как результат этой деятельности – система полученных научных знаний.

· В-третьих, наука понимается как одна из форм общественного сознания, социальный институт.

Непосредственная цель науки – постижение объективной истины, полученной как результат знаний об объективном и о субъективном мире.

К естественным наукам относятся науки:

· О космосе, его строении, развитии (астрономия, космология, и проч.);

· Земле (геология, геофизика, и др.);

· Физических, химических, биологических системах и процессах, формах движения материи (физика и т. п.);

· Человеке как биологическом виде, его происхождении и эволюции (анатомия и т. д.).

Технические науки содержательно основываются на естественных науках.

· Они изучают различные формы и направления развития техники (радиотехника, электротехника и проч.).

Социальные науки также имеют ряд направлений и изучают общество (экономика, социология, политология, юриспруденция и т. п.). Гуманитарные науки — науки о духовном мире человека, об отношении к окружающему миру, обществу, себе подобным (педагогика, психология,).



Поделиться:


Последнее изменение этой страницы: 2021-12-07; просмотров: 41; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.143.239.231 (0.042 с.)