Электромеханический период развития ВТ 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Электромеханический период развития ВТ



Элементная база – основным считающим устройством было электромеханическое устройство – реле - это переключатель с двумя позициями: включено - выключено. Появился новый тип машин – счетно-аналитические, которые не только выполняли счетные операции, но и автоматически проводили сопоставления и анализ данных. Это были предшественники современных СУБД – систем управления базами данных. И первый настоящий работающий компьютер – универсальный автоматический вычислительный прибор – был электромеханическим.

ü (20 слайд) «Табулятор Холлерита», 1887г, США – счетно-аналитический комплекс с использованием идей Беббиджа и Жаккара. Он использовался для переписи населения России, Канаде, США, для обработки отчетности на железных дорогах США, в крупных торговых фирмах.

ü (21 слайд) «Z3», 1939-1941г – релейная машина с программным управлением и запоминающим устройством Z3. Программа в машину вводилась с помощью восьмиканальной перфорированной киноленты. Полноценным компьютером она не может считаться, т.к. не могла решать задачи с разветвляющимися алгоритмами.

ü (22 слайд) «Mark-1», 1944г – Айкен на предприятии фирмы IBMс помощью работ Беббиджа построил аналитическую машину на электромеханическом реле. Скорость вычислений этой машины была во сто крат быстрее арифмометра с электроприводом. Было создано несколько модификаций этой машины. Размеры «Mark-1» впечатляют: она была 17м в длину и по 2,5 м в высоту и ширину. Объем памяти был равен 72 словам, скорость вычислений – 3 сложения в секунду.

ü (23 слайд) «РВМ – 1», 1957г, в СССР – релейная вычислительная машина. Это был последний крупный проект релейной ВТ. В этот период создаются машинно-счетные станции, которые являлись предприятиями механизированного счета.

 

Электронный период развития ВТ

Элементная база – электронные приборы – электронно-вакуумные лампы, транзисторы, интегральные схемы, большие (БИС) и сверхбольшие (СБИС) интегральные схемы. В соответствии с этими элементами в электронном этапе выделяют поколения ЭВМ (электронно-вычислительных машин).

Началось все в 40-х годах XX– в обстановке строжайшей секретности (начало второй мировой войны и далее холодной войны) по заказу Министерства обороны США.

ü (24 слайд) «ЭВМ ENIAC», 1943-1945 г – на основе электронных ламп группа под руководством Моучли и Эккерта – машина для решения разного рода задач. Эта машина превосходила производительностью «Mark-1».(размеры длина 17м, высота 2,5м, имела 750 тысяч деталей, обрабатывала 23 разрядные числа. За день выполняла расчеты, которые вручную выполнялись за 6 месяцев), в 1000 раз и была больше нее в 2 раза (вес 30тонн).ENIAC содержала 18000 электронных ламп, 150 реле, 70000 резисторов, 10000 конденсаторов, потребляя мощность в 140 кВт. Но у неё не было памяти и для задания программы надо было соединить определенным образом провода.

ü (25 слайд) «Принципы Джона фон Неймана», 1946 г – общие принципы построения цифровой вычислительной машины, которые до сих пор используются в современных ПК. Компьютер должен иметь:

o арифметико-логическое устройство, выполняющее арифметические и логические операции

o устройство управления, которое организует процесс выполнения программ

o запоминающее устройство, или память для хранения программ и данных

o внешнее устройство ввода-вывода данных

 

Поколения ЭВМ

Электронный период рассмотрим более подробно. Под поколением ЭВМ понимают все типы и модели вычислительных машин, разработанные различными конструкторскими коллективами, но построенные на одних и тех же научных и технических принципах.

Компьютеры этого периода делятся на поколения условно. Смена поколений связана со сменой элементной базы электронно-вычислительных машин. (26, 27 слайд)

1) Первое поколение ЭВМ ( 1945-1954 гг.)

Основоположниками компьютерной науки по праву считаются Клод Шеннон - создатель теории информации, Алан Тьюринг - математик, разработавший теорию программ и алгоритмов, и Джон фон Нейман - американский ученый, который в 1945 г сформулировал общие принципы, положенные в основу построения подавляющего большинства компьютеров.

Элементной базой компьютеров первого поколения былиэлектронные лампы (вроде тех, что были в старых телевизорах). Это доисторические времена, эпоха становления вычислительной техники.

Ввод чисел в первые машины производился с помощью перфокарт, а программное управление последовательностью выполнения операций осуществлялось, например в ENIAC, как в счетно-аналитических машинах, с помощью штеккеров и наборных полей.

Первой серийно выпускавшейся ЭВМ 1-го поколения стал компьютер UNIVAC (Универсальный автоматический компьютер). Разработчики: Джон Мочли (John Mauchly) и Дж. Преспер Эккерт (J. Prosper Eckert).

Программное обеспечение компьютеров 1-го поколения состояло в основном из стандартных подпрограмм.

Машины этого поколения: «ENIAC», «МЭСМ», «БЭСМ», «IBM -701», «Стрела», «М-2», «М-3», «Урал» (занимаемая площадь 50 кв. м.), «Урал-2», «Минск-1», «Минск-12», «М-20» и др.

Эти машины занимали большую площадь, использовали много электроэнергии и состояли из очень большого числа электронных ламп. Например, машина «Стрела» состояла из 6400 электронных ламп и 60 тыс. штук полупроводниковых диодов. Их быстродействие не превышало 2—3 тыс. операций в секунду, оперативная память не превышала 2 Кб. Только у машины «М-2» (1958) оперативная память была 4 Кб, а быстродействие 20 тыс. операций в секунду.

 (28 слайд) В 40-е годы XX века начались работы по созданию первых электронно-вычислительных машин, в которых на смену механическим деталям пришли электронные лампы. ЭВМ первого поколения требовали для своего размещения больших залов, так как в них использовались десятки тысяч электронных ламп. Такие ЭВМ создавались в единичных экземплярах, стоили очень дорого и устанавливались в крупнейших научно-исследовательских центрах.

(29, 30 слайд) В 1945 году в США был построен ENIAC (Electronic Numerical Integrator and Computer - электронный числовой интегратор и калькулятор), а в 1950 году в СССР была создана МЭСМ (Малая Электронная Счетная Машина).

  (31-34 слайд) ЭВМ первого поколения могли выполнять вычисления со скоростью несколько тысяч операций в секунду, последовательность выполнения которых задавалась программами. Программы писались на машинном языке, алфавит которого состоял из двух знаков: 1 и 0. 

 

2) Второе поколение ЭВМ (1955-1964)

В качестве основного элемента были использованы уже не электронные лампы, а полупроводниковые диоды и транзисторы, а в качестве устройств памяти стали применяться магнитные сердечники и магнитные барабаны - далекие предки современных жестких дисков. Второе отличие этих машин — это то, что появилась возможность программирования на алгоритмических языках. Были разработаны первые языки высокого уровня - Фортран, Алгол, Кобол.

Машины этого поколения: «РАЗДАН-2», «IВМ-7090», «Минск-22,-32», «Урал- 14,-16» (занимаемая площадь 20 кв. м.), «БЭСМ-3,-4,-6», «М-220, -222» и др.

Применение полупроводников в электронных схемах ЭВМ привели к увеличению достоверности, производительности до 30 тыс. операций в секунду, и опера­тивной памяти до 32 Кб. Уменьшились габаритные размеры машин и потребление электроэнергии. Но главные достижения этой эпохи принадлежат к области программ. На втором поколении компьютеров впервые появилось то, что сегодня называется операционной системой.

Соответственно расширялась и сфера применения компьютеров.

(35, 36 слайд) В 60-е годы XX века были созданы ЭВМ второго поколения, основанные на новой элементной базе — транзисторах, которые имеют в десятки и сотни раз меньшие размеры и массу, более высокую надежность и потребляет значительно меньшую электрическую мощность, чем электронные лампы. Такие ЭВМ производились малыми сериями и устанавливались в крупных научно-исследовательских центрах и ведущих высших учебных заведениях.

(37, 38 слайд) В СССР в 1967 году вступила в строй наиболее мощная в Европе ЭВМ второго поколения БЭСМ-6 (Большая Электронная Счетная Машина), которая могла выполнять 1 миллион операций в секунду.

(39 слайд) В БЭСМ-6 использовалось 260 тысяч транзисторов, устройства внешней памяти на магнитных лентах для хранения программ и данных, а также алфавитно-цифровые печатающие устройства для вывода результатов вычислений. Работа программистов по разработке программ существенно упростилась, так как стала проводиться с использованием языков программирования высокого уровня (Алгол, Бейсик и др.).

3) Третье поколение ЭВМ (1965-1974)

Машины третьего поколения — это семейства машин с единой архитектурой, т.е. программно совместимых. В качестве элементной базы в них используются интегральные схемы - целых устройств и узлов из десятков и сотен транзисторов, выполненных на одном кристалле полупроводника, которые также называются микросхемами.

Машины третьего поколения имеют развитые операционные системы. Они обладают возможностями мультипрограммирования, т.е. одновременного выполнения нескольких программ.

Примеры машин третьего поколения — семейства IBM—360, IBM—370, ЕС ЭВМ (Единая система ЭВМ), СМ ЭВМ (Семейство малых ЭВМ) и др.

Быстродействие машин внутри семейства изменяется от нескольких десятков тысяч до миллионов операций в секунду. Ёмкость оперативной памяти достигает нескольких сотен тысяч слов.

В 1969 г. зародилась первая глобальная компьютерная сеть - зародыш того, что мы сейчас называем Интернетом. И в том же 1969 году одновременно появились операционная система Unix и язык программирования С ("Си"), оказавшие огромное влияние на программный мир и до сих пор сохраняющие свое передовое положение.

В 1971 г. фирма Intel, выпустила первый микропроцессор, который предназначался для только-только появившихся настольных калькуляторов.

В конце 1973 г. Intel разработала однокристальный 8-разрядный МП 8080, рассчитанный для многоцелевых применений.

Стив Возняк (будущий «отец» компьютеров Apple) собрал свой первый компьютер в 1972 году из деталей, забракованных местным производителем полупроводников в городе Беркли, штат Калифорния. Стив назвал свое изобретение Cream Soda Computer, поскольку пил именно этот напиток во время сборки аппарата.

(40 слайд) Начиная с 70-х годов прошлого века, в качестве элементной базы ЭВМ третьего поколения стали использовать интегральные схемы. В интегральной схеме (маленькой полупроводниковой пластине) могут быть плотно упакованы тысячи транзисторов, каждый из которых имеет размеры, сравнимые с толщиной человеческого волоса.

(41-43 слайд) ЭВМ на базе интегральных схем стали гораздо более компактными, быстродействующими и дешевыми. Такие мини-ЭВМ производились большими сериями и были доступными для большинства научных институтов и высших учебных заведений.

4) Четвертое поколение ЭВМ

Обычно считается, что период с 1975 г. принадлежит компьютерам четвертого поколения. Их элементной базой стали большие интегральные схемы (БИС. В одном кристалле интегрированно до 100 тысяч элементов). Быстродействие этих машин составляло десятки млн. операций в секунду, а оперативная память достигла сотен Мб.

Однако, есть и другое мнение - многие полагают, что достижения периода 1975-1985 г.г. не настолько велики, чтобы считать его равноправным поколением. Сторонники такой точки зрения называют это десятилетие принадлежащим "третьему-с половиной" поколению компьютеров. И только с 1985г., когда появились супербольшие интегральные схемы (СБИС. В кристалле такой схемы может размещаться до 10 млн. элементов.), следует отсчитывать годы жизни собственно четвертого поколения, здравствующего и по сей день.

Развитие ЭВМ 4-го поколения пошло по 2 направлениям:

1-ое направление — создание суперЭВМ - комплексов многопроцессорных машин. Быстродействие таких машин достигает нескольких миллиардов операций в секунду. Они способны обрабатывать огромные массивы информации. Сюда входят комплексы ILLIAS-4, CRAY, CYBER, «Эльбрус-1», «Эльбрус-2» и др. "Эльбрус-2" эксплуатировались в Центре управления космическими полетами, в ядерных исследовательских центрах. Наконец, именно комплексы "Эльбрус-2" с 1991 года использовались в системе противоракетной обороны и на других военных объектах.

2-ое направление — дальнейшее развитие на базе БИС и СБИС микро-ЭВМ и персональных ЭВМ (ПЭВМ). Первыми представителями этих машин являются Apple, IBM - PC (XT, AT, PS /2), «Искра», «Электроника», «Мазовия», «Агат», «ЕС-1840», «ЕС-1841» и др.

Начиная с этого поколения ЭВМ стали называть компьютерами.

1983-1984 гг. – появились первые 32-разрядные микропроцессоры на мировом рынке, но их широкое использование в высокопроизводительных ПК началось с 1985 г. после выпуска фирмами Intel и Motorola микропроцессоров 80386 и М68020 соответственно. Эти БИС открыли новое микропроцессорное поколение, реализующее обработку данных на уровне "больших" ЭВМ.

В 1989 г. был начат выпуск более мощного МП 80486 с быстродействием более 50 млн. операций в секунду.

В марте 1993 г. фирма Intel продолжает ряд 80х86 выпуском микропроцессора Р5 "Pentium" с 64-разрядной архитектурой.

Потом были "Pentium 2", "Pentium 3". Сегодня самым популярным МП является "Pentium 4".

Тактовые частоты современных ПК превышают 3 ГГц, объемы оперативной памяти до 4 ГБ. Емкость накопителей на жестких дисках выросла до 500 ГБ.

Широкое распространение получили сегодня переносные ПК - noutebook, карманные ПК (КПК) и мобильные ПК – смартфоны, объединяющие функции ПК и телефона.

(44-47 слайд) Развитие высоких технологий привело к созданию больших интегральных схем — БИС, включающих десятки тысяч транзисторов. Это позволило приступить к выпуску компактных персональных компьютеров, доступных для массового пользователя.

(48-50 слайд) Современные персональные компьютеры компактны и обладают в тысячи раз  большим быстродействием по сравнению с первыми персональными компьютерами (могут выполнять несколько миллиардов операций в секунду).

5) Современные супер-ЭВМ

(51 слайд) Это многопроцессорные комплексы, которые позволяют добиться очень высокой производительности и могут применяться для расчетов в реальном времени в метеорологии, военном деле, науке и т. д.

Недостаток всех ЭВМ: для решения своих задач необходимо записать их на языках программирования, чтобы понял компьютер, что недоступно простым пользователям.

Пятое поколение ЭВМ

ЭВМ пятого поколения — это ЭВМ будущего. Предполагается, что их элементной базой будут служить не СБИС, а созданные на их базе устройства с элементами искусственного интеллекта. Для увеличения памяти и быстродействия будут использоваться достижения оптоэлектроники и биопроцессоры.

Программа разработки, так называемого, пятого поколения ЭВМ была принята в Японии в 1982 г. Предполагалось, что к 1991 г. будут созданы принципиально новые компьютеры, ориентированные на решение задач искусственного интеллекта.

К сожалению, японский проект ЭВМ пятого поколения повторил трагическую судьбу ранних исследований в области искусственного интеллекта. Более 50-ти миллиардов йен инвестиций были потрачены впустую, проект прекращен, а разработанные устройства по производительности оказались не выше массовых систем того времени. Однако проведенные в ходе проекта исследования и накопленный опыт сильно помогли прогрессу в области систем искусственного интеллекта в целом.

На ЭВМ пятого поколения ставятся совершенно другие задачи, нежели при разработки всех прежних ЭВМ. Если перед разработчиками ЭВМ с I по IV поколений стояли такие задачи, как увеличение производительности в области числовых расчётов, достижение большой ёмкости памяти, то основной задачей разработчиков ЭВМ V поколения является создание искусственного интеллекта машины (возможность делать логические выводы из представленных фактов), развитие "интеллектуализации" компьютеров - устранения барьера между человеком и компьютером.

Уже сейчас компьютеры способны воспринимать информацию с рукописного или печатного текста, с бланков, с человеческого голоса, узнавать пользователя по голосу, осуществлять перевод с одного языка на другой. Это позволяет общаться с компьютерами всем пользователям, даже тем, кто не имеет специальных знаний в этой области.

Сейчас ведутся разработки компьютеров на основе больших интегральных схем повышенной степени интеграции, использования оптоэлектронных принципов (лазеры, голография). Ставятся совершенно другие задачи, нежели для прежних компьютеров. Если перед предыдущими четырьмя поколениями ЭВМ ставились задачи увеличения производительности в области числовых расчетов, достижение большой емкости памяти, то основной задачей разработчиков ЭВМ пятого поколения является создание искусственного интеллекта машины (возможность делать логические выводы из представления фактов), развитие «интеллектуализации» компьютеров – устранение барьера между человеком и компьютером. Компьютеры будут способны воспринимать информацию с рукописного или печатного текста, с бланков, с человеческого голоса, узнавать пользователя по голосу, осуществлять перевод с одного языка на другой. Это позволит общаться с ЭВМ всем пользователям, даже тем, кто не обладает специальных знаний в этой области. ЭВМ будет помощником человеку во всех областях.

Современные вычислительные машины представляют одно из самых значительных достижений человеческой мысли, влияние которого на развитие научно-технического прогресса трудно переоценить. Область применения ЭВМ огромна и непрерывно расширяется.

На протяжении всего 50 лет компьютеры превратились из неуклюжих диковинных электронных монстров в мощный, гибкий, удобный и доступный инструмент. Компьютеры стали символом прогресса в XX веке. По мере того как человеку понадобится обрабатывать все большее количество информации, будут совершенствоваться и средства ее обработки - компьютеры.

 



Поделиться:


Последнее изменение этой страницы: 2021-12-07; просмотров: 127; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.16.66.206 (0.03 с.)