Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Издательство УПЦ «Талант» - 2003↑ Стр 1 из 15Следующая ⇒ Содержание книги
Поиск на нашем сайте
Основы ЭЛЕКТРОБЕЗОПАСНОСТИ Методические материалы для работников охраны труда и ответственных за электрохозяйство 3-е издание
Издательство УПЦ «Талант» - 2003
СОДЕРЖАНИЕ ВВЕДЕНИЕ 1. ОБЩИЕ ТРЕБОВАНИЯ ЭЛЕКТРОБЕЗОПАСНОСТИ 1.1. Статистика электротравматизма 1.2. Нормативно-техническая документация 1.3. Понятие об электробезопасности 1.4. Факторы, определяющие исход поражения 1.5. Классификация помещений (условий работ) по опасности поражения электрическим током 1.6. Программа обследования состояния техники безопасности при эксплуатации электроустановок потребителей 1.7. Техническая документация 1.8. Средства защиты, используемые в электроустановках 2. ОРГАНИЗАЦИЯ БЕЗОПАСНОЙ ЭКСПЛУАТАЦИИ ЭЛЕКТРОУСТАНОВОК 2.1 Задачи электротехнического персонала 2.2. Ответственность за выполнение Правил эксплуатации электроустановок потребителей 2.3. Требования к персоналу 2.4. Подготовка персонала 2.5. Производство работ 2.6. Организационные мероприятия, обеспечивающие безопасность работ 2.7. Технические мероприятия, обеспечивающие безопасность работ со снятием напряжения 2.8. Работы без снятия напряжения 3. ТЕХНИЧЕСКИЕ СПОСОБЫ И СРЕДСТВА ОБЕСПЕЧЕНИЯ ЭЛЕКТРОБЕЗОПАСНОСТИ. ЗАЩИТА ОТ ПРЯМЫХ ПРИКОСНОВЕНИЙ 3.1. Виды прикосновений в электроустановках 3.2. Номенклатура видов защиты 3.3. Защитные оболочки, ограждения. Безопасное расположение токоведущих частей 3.4. Изоляция токоведущих частей 3.5. Изоляция рабочего места 3.6. Малое напряжение 3.7. Защитное отключение 3.8. Сигнализация, блокировка, знаки безопасности 3.9. Электрическое разделение сети 3.10. Контроль изоляции 3.11. Компенсация токов замыкания на землю 3.12. Средства индивидуальной защиты 4. ТЕХНИЧЕСКИЕ СПОСОБЫ И СРЕДСТВА ОБЕСПЕЧЕНИЯ ЭЛЕКТРОБЕЗОПАСНОСТИ. ЗАЩИТА ОТ КОСВЕННЫХ ПРИКОСНОВЕНИЙ 4.1. Защитное заземление. Зануление 4.2. Выравнивание потенциалов 4.3. Система защитных проводов 4.4. Изоляция нетоковедущих частей 4.5. Совместное применение отдельных видов защиты 5. ТЕХНИЧЕСКИЕ МЕРЫ ЭЛЕКТРОБЕЗОПАСНОСТИ В ЖИЛЫХ И ОБЩЕСТВЕННЫХ ЗДАНИЯХ 5.1. Состояние вопроса 5.2. Технические решения 5.3. Мобильные здания из металла 6. ЗАЩИТА ОТ ЭЛЕКТРОМАГНИТНЫХ ПОЛЕЙ (ЭМП) ПРОМЫШЛЕННОЙ ЧАСТОТЫ 6.1 Составляющие ЭМП 6.2. Электрическое поле 6.3. Магнитное поле 6.4. Способы и средства защиты от ЭМП 7. СТАТИЧЕСКОЕ ЭЛЕКТРИЧЕСТВО И МЕРЫ БОРЬБЫ С НИМ 7.1 Причины электризации 7 2. Опасность статического электричества 7.3 Нормирование параметров СЭ 7.4. Меры борьбы со СЭ 8. ПЕРВАЯ ДОВРАЧЕБНАЯ ПОМОЩЬ ПОСТРАДАВШЕМУ ОТ ЭЛЕКТРИЧЕСКОГО ТОКА 9 МЕРЫ ПО ЭКОНОМИИ ЭЛЕКТРОЭНЕРГИИ 9.1. Нормирование расходов электроэнергии 9.2. Мероприятия по экономии электроэнергии 10 ВОПРОСЫ ДЛЯ САМОКОНТРОЛЯ ВВЕДЕНИЕ Несмотря на реализацию комплекса организационных и технических мер электротравматизм по-прежнему представляет серьёзную опасность. В некоторых отраслях он не снижается, а в строительстве, сельском хозяйстве, быту возрастает. Существенными причинами электротравм являются: нечёткое знание механизма физиологического действия электрического тока на организм человека, недостаточная техническая грамотность, снижающая эффективность применения защитных мероприятий, нарушение действующих правил и инструкций. Опыт показывает, что такое положение по электробезопасности в значительной мере предопределяется неправильным исполнением обязанностей должностными лицами. Устранению причин электротравматизма и, как следствие, снижению его способствует обучение специалистов, обслуживающих электроустановки и контролирующих их эксплуатацию. Далеко не последняя роль в этом принадлежит работникам охраны труда. В соответствии с действующими Правилами эксплуатации электроустановок потребителей инженеры по охране труда (ОТ), допущенные к инспектированию электроустановок, раз в три года должны проходить Проверку знаний по электробезопасности. Инженеру по ОТ, прошедшему I проверку знаний в объёме 4 группы по электробезопасности, выдаётся соответствующее удостоверение (на право инспектирования электроустановок своего предприятия). Предлагаемые материалы призваны помочь в подготовке к сдаче экзаменов. Они включают в себя основные положения по электробезопасности, в частности, сведения о физиологическом действии тока; классификации помещений по степени опасности поражения электрическим током; задачах электротехнического персонала и требования к нему, его подготовке; вопросах, включаемых в акт при проверке состояния электробезопасности на предприятии; технических мерах и способах обеспечения электробезопасности; организации эксплуатации электроустановок; знаках (плакатах) по электробезопасности; средствах индивидуальной защиты и ряд других вопросов, знание которых обязательно для работников охраны труда. Кроме того, на каждом предприятии (организаций) в соответствии с Правилами эксплуатации электроустановок потребителей для непосредственного выполнения функций по организации эксплуатации электроустановок назначается ответственный за электрохозяйство. Он должен проходить 'аттестацию в той же комиссии, что и инженеры по охране труда, инспектирующие электроустановки. Предполагается, что эти материалы будут способствовать повышению квалификации инженеров охраны труда, ответственных за электрохозяйство, будут полезны при исполнении ими функциональных обязанностей, позволят более качественно инспектировать состояние электроустановок предприятия. ОБЩИЕ ТРЕБОВАНИЯ ЭЛЕКТРОБЕЗОПАСНОСТИ ОРГАНИЗАЦИЯ БЕЗОПАСНОЙ ЭКСПЛУАТАЦИИ ЭЛЕКТРОУСТАНОВОК Ответственность за выполнение Правил эксплуатации электроустановок потребителей За нарушение в работе электроустановок несут персональную ответственность: работники, непосредственно обслуживающие электроустановки (за нарушение по их вине); работники, проводящие ремонт (за низкое качество ремонта); руководители и специалисты энергослужбы (за неудовлетворительное техническое обслуживание и невыполнение противоаварийных мероприятий). Это отражается в должностных инструкциях. Ответственность может быть дисциплинарной, административной или уголовной. Она устанавливается инструкциями и действующим законодательством. При обнаружении неисправности электроустановок или средств защиты каждый работник должен немедленно сообщить об этом своему непосредственному руководителю. Государственный надзор за соблюдением ПЭЭП осуществляется органами Госэнергонадзора (см. ПЭЭП, пп. 1.2.10 - 1.2.12), Требования к персоналу Электротехнический персонал предприятий подразделяется на: административно-технический, который организует оперативные переключения, ремонтные, монтажные и наладочные работы в электроустановках и принимает непосредственно участие; обладает правами оперативного, ремонтного, оперативно-ремонтного персонала; оперативный, ведёт оперативное управление электрохозяйством, оперативное обслуживание, переключение, подготовку рабочего места, допуск к работам и надзор за работающими; должен пройти стажировку на рабочем месте не менее двух недель; ремонтный - за ним ремонт, реконструкция, монтаж электроустановок, испытание, измерение, наладка, регулировка электроаппаратуры; оперативно-ремонтный, осуществляет функции оперативного и ремонтного персонала на закрепленных за ним электроустановках; электротехнологический персонал, обслуживает электротехнологические установки и процессы (электролиз, электросварка и т.п.); имеет достаточные знания и навыки для безопасного выполнения работ по техническому обслуживанию энергонасыщенного производственно-технического оборудования. Он не входит в состав электротехнической службы, имеет группу по электробезопасности II и выше. Руководитель, в подчинении которого находится электротехнологический персонал, должен иметь группу по электробезопасности не ниже, чем у подчинённого персонала. Перечень должностей ИТР и электротехнологического персонала, которым необходимо иметь группу по электробезопасности, утверждает руководитель. Производственному неэлектротехническому персоналу, выполняющему работы с опасностью поражения электрическим током присваивается I группа по электробезопасности. Он ежегодно проходит инструктаж, который проводит лицо из электротехнического персонала с группой по электробезопасности не ниже 3. Оформление производится в специальном журнале, удостоверение не выдается. Электротехническому персоналу с группой по электробезопасности II-V выдаётся соответствующее удостоверение. II группа присваивается лицам, которые не имели группы (ученикам, электросварщикам, крановщикам, термистам и т.п.); III,IV,V - лицам электротехнического персонала в зависимости от знаний, стажа работы в действующих электроустановках. Перечень должностей ИТР, электротехнического персонала, которым необходимо иметь группу по электробезопасности утверждает руководитель предприятия, организации. Работники из электротехнического персонала до 18 лет к работе в электротехнических установках не допускаются. Практикантам из учебных заведений до 18 лет разрешается пребывание в действующих электроустановках под постоянным надзором лиц из электротехнического персонала с группой не ниже III в электроустановках до 1000 В, не ниже IV в электроустановках выше 1000 В. Им до 18 лет запрещается допуск к самостоятельной работе и присвоение группы III и выше. Электротехнический персонал не должен иметь увечий и болезней, мешающих производственной работе. Состояние здоровья электротехнического персонала определяется медицинским освидетельствованием при приёме на работу, а так же периодическими осмотрами (сроки устанавливаются органами здравоохранения). От медицинского освидетельствования освобождается административно-технический персонал, не принимающий участие в оперативных, ремонтных, монтажных и наладочных работах и не организующий их. Требования к объему знаний и умений электротехнического (электротехнологического) персонала с группами по электробезопасности II-V в зависимости от уровня образования и стажа работы приведены в Приложении №1 Межотраслевых Правил по охране труда (правил безопасности) при эксплуатации электроустановок. В частности, работники, не имеющие профессиональной подготовки (со средним образованием или без него) могут получить II группу после обучения по программе не менее 72 часов в специализированных центрах подготовки персонала (учебных комбинатах). Подготовка персонала Электротехнический персонал при назначении на самостоятельную работу, при переходе на другую работу, при перерыве в работе более 1 года должен пройти производственное обучение на рабочем месте. На время обучения обучаемый прикрепляется к опытному работнику из электротехнического персонала. После обучения производится проверка знаний с присвоением соответствующей группы по электробезопасности. После проверки знаний - стажировка на рабочем месте (дублирование) продолжительностью не менее 2 недель и только после этого распоряжением по предприятию или цеху осуществляется допуск к самостоятельной работе. Ответственность за правильность действий обучаемых и соблюдение им требований Правил несут как сам обучаемый, так и обучающий его работник. Проверка знаний Правил и инструкций подразделяется на первичную (перед допуском к самостоятельной работе, при поступлении на работу), периодическую, внеочередную (при нарушении правил и инструкций, по требованию ответственного за электрохозяйство или органов Госэнергонадзора; после несчастных случаев или крупного нарушения техники безопасности, при плохом состоянии электрооборудования оформляется специальное предписание, которое может направить инженер по охране труда или главный инженер). Периодическая проверка для электротехнического персонала, непосредственно обслуживающего действующие электроустановки, выполняющего электромонтажные и ремонтные работы, испытания, оформляющего распоряжения и организующего эти работы проводится 1 раз в год; для руководителей и специалистов, не относящихся к предыдущей группе, а также для инженеров по охране труда, допущенных к инспектированию электроустановок, - 1 раз в три года. Допускается продление срока проверки на один месяц (из-за отпуска, болезни). Получившим неудовлетворительную оценку комиссии назначает повторную проверку в срок не ранее двух недель и не позднее одного месяца со дня последней проверки. Аналогично организуется и третья проверка. При получении неудовлетворительной оценки при третьей проверке знаний производится перевод работника на другую работу, не связанную с обслуживанием электроустановок. Проверку знаний должна проводить квалификационная комиссия в количестве не менее трёх человек: у ответственного за электрохозяйство предприятия, его заместителя и инженера по охране труда, контролирующею электроустановки - в составе руководителя (заместителя), инспектора Энергонадзора и представителя службы охраны труда (профсоюза); у ответственных за электрохозяйство структурных подразделений - комиссия, назначаемая руководителем с участием ответственного за электрохозяйство предприятия; у остальных - комиссия, назначаемая ответственным за электрохозяйство (с участием непосредственного руководителя работника, чьи знания проверяет комиссия). Разрешается использование ЭВМ при всех видах проверки, кроме первичной. Проверка знаний проводится индивидуально. Результаты проверки заносятся в журнал специальной формы, выдается удостоверение специальной формы (инженеру по охране труда - с правом инспектирования электроустановок). Роспись членов комиссии может производиться один раз с указанием прописью числа лиц, у которых проведена проверка знаний (ПЭЭП, гл. 1.4. п.п. 1.4.8 - 1.4.20). Порядок присвоения групп по электробезопасности регламентируется также письмом Главгосэнергонадзора № 42 - 6\20 - ЭТ от 17.07.95, которое разъясняет порядок проверки знаний и присвоения групп по электробезопасности (см. журнал «Охрана труда и социальное страхование» №5, 1997г.) Кстати, предписывается в учебных комбинатах, на курсах, факультетах повышения квалификации и других специализированных учебно-производственных подразделениях создавать комиссии приказом (распоряжением) руководителя главного или регионального Энергонадзора для проверки знаний и присвоения группы по электробезопасности персоналу предприятий, организаций и учреждений, прошедших в них обучение (повышение квалификации). Органами Госэнергонадзора выдаётся специальное разрешение на создание таких комиссий, а сами члены комиссий проходят проверку знаний электробезопасности в этих органах (выдавших разрешение). При этом председателем комиссии, как правило, назначается старший государственный инспектор по энергетическому надзору. Во всех случаях комиссии создаются, как правило, в количестве не менее пяти человек, в приказе (распоряжении) члены комиссии перечисляются пофамильно, список членов комиссии уточняется и утверждается. Из состава комиссии назначается председатель, один или несколько заместителей. Все члены комиссии должны иметь группу по электробезопасности (за исключением председателя профкома). Председатель комиссии должен иметь V группу по электробезопасности, если в электрохозяйстве есть электроустановки на напряжение выше 1000 В; если таковых нет - председателю комиссии достаточно иметь IV группу. В ряде случаев для работы на предприятиях, в учреждениях и организациях может привлекаться электротехнический персонал, имеющий соответствующую группу по электробезопасности, для работы по совместительству. Проверка их знаний может не проводиться, но решение об этом принимает местный орган Госэнергонадзора по письменному обращению руководителя (владельца) предприятия, учреждения, организации, принимающих специалиста для работы по совместительству. Во всех подобных случаях, поступающие на работу по совместительству специалисты должны представить удостоверение и выписку из журнала (протокола) проверки знаний норм и правил работы в электроустановках по основной работе, которая должна быть заверена первым руководителем и печатью. Производство работ Работы в электроустановках в отношении мер безопасности подразделяются на выполняемые: со снятием напряжения; без снятия напряжения на токоведущих частях и вблизи них; К работам со снятием напряжения относятся работы, выполняемые в электроустановке (или части её), в которой с токоведущих частей снято напряжение. К работам без снятия напряжения на токоведущих частях, и вблизи них относятся работы, производимые непосредственно на этих частях. В установках напряжением выше 1000 В, a также на воздушных линиях до 1000 В к этим же работам относятся такие, которые выполняются на расстояниях от токоведущих частей, менее допустимых. Такие работы должны выполнять не менее двух лиц: производитель работ с группой не ниже IV, остальные -ниже III. Номенклатура видов защиты В соответствии с ГОСТ 12.1.019 - 79 «Электробезопасность. Общие требования и номенклатура видов защиты» для обеспечения безопасности при прямых прикосновениях необходимо применять следующие технические способы и средства:
Для защиты от поражения электрическим током при косвенных прикосновениях применяют следующие способы и средства:
Технические способы и средства защиты применяют раздельно или в сочетании друг с другом так, чтобы обеспечивалась оптимальная защита. Изоляция токоведущих частей ГОСТ 12.1.009 - 76 «Электробезопасность. Термины и определения» различает следующие виды изоляции: рабочую, дополнительную, двойную, усиленную. Рабочая изоляция обеспечивает нормальную работу электроустановок и защиту от поражения электрическим током. Дополнительная изоляция предусмотрена наряду с рабочей для защиты от поражения электрическим током в случае повреждения рабочей изоляции. Двойной называется изоляция, состоящая из рабочей и дополнительной. Материалы, используемые для рабочей и дополнительной изоляции, имеют различные свойства, что делает маловероятным одновременное их повреждение. Усиленная изоляция - это улучшенная рабочая изоляция, обеспечивающая такую же степень защиты от поражения электрическим током, как и двойная изоляция, но конструктивно выполненная так, что каждую из составляющие изоляции отдельно испытать нельзя. С двойной изоляцией изготавливаются отдельные электротехнические изделия, например, ручные светильники, ручные электрические машины (электроинструмент), разделяющие трансформаторы. Част в качестве дополнительной изоляции используется корпус электроприемника, выполненный из изоляционного материала. Такой корпус защищает от поражения электрическим током не только при пробое изоляции внутри изделия, но и при случайном прикосновении рабочей части инструмента к токоведущей части. Если же корпус изделия металлический, то роль дополнительной изоляции играют изоляционные втулки, через которые питающий кабель проходит внутрь корпуса, и изолирующие прокладки, отделяющие электродвигатель от корпуса. Усиленная изоляция используется только в тех случаях, когда двойную изоляцию затруднительно применить по конструктивным причинам, например, в выключателях, щёткодержателях и др. Изделия, имеющие двойную изоляцию и металлический корпус, запрещается заземлять или занулять. На паспортной табличке такого изделия помещается знак - квадрат внутри квадрата. При эксплуатации электроинструмента с двойной изоляцией необходимо ежемесячное испытание изоляции мегаомметром, а при каждой выдаче для работы - проверка отсутствия замыкания на корпус при помощи специального прибора - нормометра. Изоляция рабочего места Согласно ПУЭ этот способ защиты применяется при невозможности выполнения заземления, зануления и защитного отключения. ГОСТ 12.1.019 -79 предусматривает изоляцию пола, настила, площадки и т. п., а также металлических деталей в области рабочего места, потенциал которых отличается от потенциалов токоведущих частей, и прикосновение к которым является предусмотренным или возможным. Допускается обслуживание электрооборудования с изолирующих площадок при условии, что прикосновение к незаземлённым (незанулённым) частям возможно только с этих площадок и исключена возможность одновременного прикосновения к электрооборудованию и частям здания или другого оборудования. Малое напряжение В соответствие с ГОСТ 12.1.009 -76 малым называется номинальное напряжение не более 50 В переменного и не более 110 В постоянного тока, применяемое в целях уменьшения опасности поражения электрическим током. Малое напряжение применяется, например, для питания ручного электрифицированного инструмента (класса III); местного освещения на станках; ручных светильников в помещениях с повышенной и особой опасностью; светильников общего освещения с лампами накаливания при высоте их подвеса менее 2,5 м. При работах в особо неблагоприятных условиях должны применяться ручные светильники напряжением не выше 12В. Источниками малого напряжения могут быть: гальванические элементы, аккумуляторы, выпрямители, преобразователи. Наиболее же часто применяются понижающие трансформаторы. Категорически запрещается использовать для этой цели автотрансформаторы, а также резисторы или реостаты, включенные по схеме потенциометра, так как эти устройства имеют гальваническую (электрическую) связь между первичной и вторичной сторонами, что создает опасность электропоражения. В зависимости от режима нейтрали питающей сети следует заземлять или занулять корпус понижающего трансформатора, а также один из выводов вторичной обмотки - на случай пробоя изоляции между обмотками. Корпуса электроприёмников малого напряжения не требуется заземлять (занулять), кроме электросварочных устройств и электроприёмников во взрывоопасных помещениях, а также при работах в особо неблагоприятных условиях (в металлических котлах, сосудах, трубопроводах и т.п.). Применение малого напряжения является эффективным способом защиты, однако, при двухполюсном прикосновении опасность поражения остается. Широкому распространению способа препятствует его неэкономичность: снижение напряжения ведет к возрастанию тока что вызывает необходимость увеличения сечения проводов. Защитное отключение Определение этого способа защиты даётся и ПУЭ: это быстродействующее автоматическое отключение всех фаз участка сети обеспечивающее безопасные для человека сочетания тока и времени его прохождения при замыканиях на корпус или снижении уровня изоляции ниже определённого значения. Указанные безопасные сочетания тока и времени установлены ГОСТ 12.1.038 -82 «Электробезопасность Предельно допустимые уровни напряжений прикосновения и токов». Например, при времени воздействия не более 0,1 с допустимый ток через тело человека составляет 500 мА, при 0,2 с - 250 мА, при 0,5 с - 100 мА и т.д. Следовательно, защита обеспечивается быстрым отключением электроустановки при возникновении в ней опасности поражения электрическим током. Другими словами, электрозащитная функция УЗО заключается в ограничении не тока через человека, а времени его протекания. Современные устройства защитного отключения (УЗО) имеют быстродействие от 0,03 до 0,2 с. УЗО создаются на различных принципах действия. Наиболее совершенным является УЗО, реагирующее на ток утечки (дифференциальный ток). Достоинство его состоит в том, что оно защищает человека от поражения электрическим током не только в случае прикосновения к металлическим корпусам, оказавшимся под напряжением из-за повреждения изоляции (о чём говорится в приведённом определении), но и при прямом прикосновении к токоведущим частям. Именно такие УЗО ГОСТ 12.1.019 -79 относит одновременно к средствам защиты как от косвенных так и от прямых прикосновений. Кроме того, УЗО выполняет ещё одну важную функцию - защиту электроустановок от возгораний, первопричиной - которых являются утечки, вызванные ухудшением изоляции. Известно, что более трети пожаров возникает от неисправностей электропроводок, поэтому вполне справедливо УЗО называют «противопожарным сторожем». Применение высокочувствительных УЗО приводит к необходимости поддержания изоляции электрических сетей и потребителей на должном уровне, то есть в конечном счёте требует повышения культуры эксплуатации электроустановок. В противном случае неизбежны частые перерывы электроснабжения потребителей по причине ложных срабатываний УЗО от естественных (фоновых) токов утечки. УЗО состоит из трёх функциональных элементов: датчика, исполнительного органа и коммутационного устройства. Датчик улавливает токи утечки, стекающие с фазных проводов на землю в случае прямого прикосновения человека или повреждения изоляции. Сигнал о наличии тока утечки поступает в исполнительный орган, где усиливается и преобразуется в команду на отключение коммутационного устройства. Исполнительный орган УЗО может работать на двух различных принципах: электронном и электромеханическом. В электронном УЗО исполнительный орган содержит электронный усилитель, в качестве источника питания которого используется сама контролируемая сеть. Надёжность работы таких устройств зависит от наличия и стабильности напряжения сети. В электромеханическом УЗО вместо электронного усилителя применяется магнитоэлектрическая защёлка, не требующая источника питания. Надёжность таких УЗО значительно выше, они продолжают выполнять электрозащитную функцию при обрыве любого из питающих нагрузку проводов. Достоинством электромеханических УЗО является также отсутствие потребления электроэнергии в основном, дежурном режиме работы, в то время как каждое электронное УЗО потребляет мощность от 4 до 8 Вт. Однако электромеханические УЗО существенно (в 2 - 2,5 раза) дороже электронных. Электрическая схема электромеханического УЗО приведена на рисунке 10. Датчиком устройства служит трансформатор тока утечки (I) кольцевой магнитопровод которого охватывает провода, питающие нагрузку (6) и играющие роль первичной обмотки. При отсутствии тока утечки рабочие токи (Iр) в прямом (фазном) и обратом (нулевом рабочем) проводах равны и наводят в магнитопроводе равные но противоположно направленные потоки; результирующий поток равен нулю и поэтому ЭДС во вторичной обмотке отсутствует. УЗО не срабатывает. При появлении тока утечки (например, при прикосновении человека к оголённому фазному проводу) ток и прямом проводе превышает обратный ток на величину тока утечки (Iут); в сердечнике возникает магнитный поток небаланса, а во вторичной обмотке наводится ЭДС, пропорциональная току утечки. По обмотке магнитоэлектрической защёлки (2) протекает ток, вызывающий срабатывание и воздействие на механизм свободного расцепления (3), отключающий контакты (4). УЗО срабатывает. Таково действие УЗО двухполюсного исполнения в цепи однофазной нагрузки. Для работы в трёхфазной сети (как трёх-, так и четырехпроводной) УЗО выполняется четырёхполюсным, то есть магнитопровод охватывает три фазных и нулевой рабочий проводники. Согласно первому закону Кирхгофа при любой несимметрии нагрузки алгебраическая сумма мгновенных значений токов в проводах, питающих нагрузку, равна нулю, результирующий поток в магнитопроводе и ЭДС во вторичной обмотке отсутствует; УЗО не срабатывает. ЭДС во вторичной обмотке наводится и УЗО срабатывает лишь от токов, замыкающихся по путям утечки, минуя нагрузку. Другими словами, токи, замыкающиеся через нагрузку (рабочий ток, сверхток перегрузки), а также токи одно-, двух-, трёхфазных коротких замыканий между проводами, питающими нагрузку, не могут вызвать срабатывание УЗО. Заметим, что двухполюсное прикосновение человека с изоляцией от земли УЗО воспринимает как нагрузку и не срабатывает, что является недостатком, принципиально присущим устройствам защитного отключения. Из сказанного следует, что УЗО не защищает сеть от сверхтоков перегрузок и коротких замыканий, то есть применение УЗО не должно означать отказа от автоматов защиты сети или плавких предохранителей. Некоторые типы устройств защитного отключения (в основном, зарубежного производства) совмещают в себе функции УЗО и автоматического выключателя, что неизбежно ведёт к снижению надёжности и Повышению стоимости за счёт усложнения схемы и увеличения количества компонентов. УЗО является высокоэффективным и перспективным способом защиты. Оно используется в электроустановках до I кВ в дополнение к защитному заземлению (занулению), а также в качестве основного или дополнительного способа защиты, когда другие способы и средства неприменимы или малоэффективны. В настоящее время в Российской Федерации действует ряд нормативных документов, регламентирующих технические параметры и требования к применению УЗО в электроустановках зданий. Ниже приводится перечень основных документов с краткими выдержками, касающимися применения УЗО. Контроль изоляции Поддержание сопротивления изоляции на высоком уровне уменьшает вероятность замыканий на землю, на корпус и поражений людей электрическим током. Контроль изоляции может быть приёмосдаточным, периодическим или постоянным (непрерывным). В мало разветвлённых сетях с изолированной нейтралью, где ёмкость фаз относительно земли невелика, сопротивление изоляции является основным фактором безопасности. Поэтому ПУЭ требует в сетях до и выше 1 кВ с изолированной нейтралью осуществлять постоянный контроль изоляции. В сетях с большой ёмкостью и в сетях с заземлённой нейтралью сопротивление изоляции не определяет безопасности, однако повреждение изоляции может стать причиной поражения при прикосновении к изолированной токоведущей части. Поэтому и в таких сетях должен проводиться контроль изоляции, правда, можно ограничиться периодическим контролем. Правила предусматривают проведение периодических проверок сопротивления изоляции магаомметром. Измеряется сопротивление изоляции каждой фазы относительно земли и между фазами на каждом участке между двумя последовательно установленными предохранителями, выключателями и другими устройствами или за последним предохранителем (выключателем). Сопротивление изоляции каждого участка в установках напряжением до 1000 В согласно ПУЭ должно быть не ниже 0,5 МОм на фазу. Неудобство таких измерений состоит в том, что они должны проводиться при полном снятии напряжения с установки и при отключенных электроприёмниках (в осветительных сетях - при вывернутых лампах накаливания). В настоящее время разработаны приборы, позволяющие измерять сопротивление изоляции под напряжением и при включённых электроприёмниках. Постоянный (непрерывный) контроль изоляции проводится под рабочим напряжением с подключенными потребителями, поэтому он дает информацию о величине сопротивления изоляции всей электроустановки. Наиболее простой схемой постоянного контроля изоляции является схема трех вольтметров (рис. 11).
Принцип действия схемы трех вольтметров можно уяснить с помощью векторных диаграмм (рис. 12).
При нормальном состоянии изоляции (рис. 12а) каждый из вольтметров показывает напряжение соответствующей фазы относительно земли. При полном (металлическом, глухом) замыкании одной из фаз, например, фазы А, на землю (рис. 126) вольтметр подключённый к этой фазе, покажет нуль, а вольтметры подключённые к другим фазам - линейное напряжение. На практике чаще возникают замыкания на землю через переходное сопротивление (неполное замыкание). В этом случае (рис. 12в) вольтметр повреждённой фазы покажет напряжение больше нуля, но меньше фазного, а вольтметры исправных фаз — напряжение больше фазного, но меньше линейного. Конкретные значения показаний вольтметров определяются величиной переходного сопротивления в месте замыкания на землю. Следует подчеркнуть, что в сети с изолированной нейтралью при замыкании фазы на землю искажаются лишь напряжения фаз и нейтральной точки относительно земли, тогда как напряжения междуфазные (линейные) и напряжения фаз относительно нейтральной точки сохраняются неизменными, что видно из рис.12. Поэтому при указанных неисправностях электроснабжение потребителей не нарушается. Вместе с тем режим однофазного замыкания на землю является аварийным и. согласно ПУЭ, должен быть устранен за время, не превышающее 2-х часов. Выравнивание потенциалов При пробое изоляции на корпус, присоединённый к заземлителю, обрыве и падении провода на землю потенциалы точек земной поверхности (токопроводящего пола) вблизи от заземлителя приобретают повышенное значение (см. рис.15). Наибольший потенциал, равный потенциалу заземлителя φ3, имеет точка земли, расположенная точно над заземлителем. При удалении от заземлителя в любую сторону потенциалы точек земли снижаются по гиперболическому закону. Можно считать, что на расстоянии более 20 м от заземлителя зона растекания заканчивается, то есть потенциалы точек земли имеют нулевое значение. Человек, находящийся в зоне растекания, может попасть под напряжение шага. Напряжение шага (Um)- это разность потенциалов между двумя точками земли, находящимися одна от другой на расстоянии шага (0,8м), на которых одновременно стоит человек. Из рис.15 видно, что величина Um зависит от: - ширины шага: чем она больше, тем больше Um; - расстояния от человека до заземлителя: при удалении от заземлителя Uш уменьшается, обращаясь в нуль за пределами зоны растекания; - величины потенциала заземлителя: чем больше φ3, тем больше Uш. Опасность воздействия напряжения шага состоит в том, что ток, протекая по пути «нога-нога», вызывает судороги мышц, что может привести к падению человека на землю. При этом возникает более опасная для человека петля тока, а также увеличивается расстояние между точками земли, которых он будет касаться. Индивидуальными средствами защиты от напряжения шага в установках выше 1000 В являются диэлектрические боты, а до 1000 В - диэлектрические галоши. Коллективным средством защиты является выравнивание потенциалов.
Человек, ко
|
|||||||
Последнее изменение этой страницы: 2016-04-08; просмотров: 430; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.133.155.253 (0.018 с.) |