Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Процесс саморазряда изоляции.Содержание книги
Поиск на нашем сайте
С учетом электропроводности изоляции схема замещения ее может быть представлена как параллельное соединение активного сопротивления R и емкости С. Если зарядить конденсатор С, зашунтированный резистором R до напряжения U0, а затем отключить его от источника напряжения и оставить разомкнутым, то конденсатор С будет постепенно разряжаться на резистор R. Напряжение на конденсаторе при этом будет изменяться по закону затухающей экспоненты. Величина T = R·C называется постоянной времени саморазряда конденсатора. Она измеряется в секундах и равна тому промежутку времени, в течение которого напряжение на конденсаторе уменьшится. Постоянная времени саморазряда изоляции не зависит от геометрических размеров изоляции, а определяется исключительно свойствами изоляции. 50) Диэлектрическими потерями называют энергию, рассеиваемую в единицу времени в диэлектрике при воздействии на него электрического поля и вызывающую нагрев диэлектрика. Потери энергии в диэлектриках наблюдаются как при переменном напряжении, так и при постоянном, поскольку в материале обнаруживаются сквозной ток, обусловленный проводимостью. При постоянном напряжении, когда нет периодической поляризации, качество материала характеризуется значениями удельных объемного и поверхностного сопротивления. При переменном напряжении необходимо использовать какую-то другую характеристику качества материала, так как в этом случае, кроме сквозной электропроводимости, возникает ряд добавочных причин, вызывающих потери энергии в диэлектрике. Для характеристики способности диэлектрика рассеивать энергию в электрическом поле пользуются углом диэлектрических потерь, а также tg этого угла. Природа диэлектрических потерь в электроизоляционных материалах различна в зависимости от агрегатного состояния вещества. Диэлектрические потери могут обуславливаться сквозным током или активными составляющими поляризационных токов. При изучении диэлектрических потерь, непосредственно связанных с поляризацией диэлектрика, можно изобразить это явление в виде кривых, представляющих зависимость электрического заряда на обкладках конденсатора с данным диэлектриком от приложенного к конденсатору напряжения. При отсутствии потерь, вызываемых явлением поляризации, заряд линейно зависит от напряжения и такой диэлектрик называется линейным. Диэлектрические потери по их особенностям и физической природе можно подразделить на четыре основных вида:
· диэлектрические потери, обусловленные поляризацией; · диэлектрические потери сквозной электропроводности; · ионизационные диэлектрические потери; · диэлектрические потери, обусловленные неоднородностью структуры. Способность диэлектрика рассеивать энергию в электрическом поле обычно характеризуют углом диэлектрических потерь, а также тангенсом угла диэлектрических потерь. При испытании диэлектрик рассматривается как диэлектрик конденсатора, у которого измеряется емкость и угол δ, дополняющий до 90° угол сдвига фаз между током и напряжением в емкостной цепи. Этот угол называется углом диэлектрических потерь. Измерение тангенса угла диэлектрических потерь. Для измерения емкости и угла диэлектрических потерь (или tgδ) эквивалентную схему конденсатора представляют как идеальный конденсатор с последовательно включенным активным сопротивлением (последовательная схема) или как идеальный конденсатор с параллельно включенным активным сопротивлением (параллельная схема). Значение тангенса угла диэлектрических потерь измеряют при напряжениях, меньших U (обычно 3 - 10 кВ). Напряжение выбирается так, чтобы облегчить испытательное устройство при сохранении достаточной чувствительности прибора. Значение тангенса угла диэлектрических потерь (tgδ) нормируется для температуры 20° С, поэтому измерение следует производить при температурах, близких к нормированной (10 - 20о С). В этом диапазоне температур изменение диэлектрических потерь невелико, и для некоторых типов изоляции измеренное значение может без пересчета сравниваться с нормированным для 20 °С. 51) Электрическая прочность – это минимальная напряженность однородного электрического поля Епр, при которой наступает пробой диэлектриков. Электрическая прочность зависит от материала диэлектрика, конфигурации электродов, внешних факторов, качества диэлектрика, типа воздействующего напряжения. Электрической прочностью обладают все газы, в том числе пары металлов, твердые и жидкие диэлектрики. При определении электрической прочности для исключения теплового пробоя измерения производятся, как правило, в импульсном режиме, но импульсы напряжения должны быть достаточно длительными, чтобы процессы, приводящие к электрическому пробою, протекали без перенапряжений. Такими процессами являются ударная ионизация либо туннельное просачивание, либо то и другое. При напряжениях выше электрической прочности диэлектрик становится проводником (когда напряженность электрического поля Е достигает пробивной Епр, электропроводность скачкообразно возрастает). Переход в проводящее состояние часто приводит к разрушению материала из-за перегрева. Электрическая прочность у газов, сравнительно с прочностью жидкостей и твердых диэлектриков, невелика и сильно зависит от внешних условий и от природы газа. Жидкие диэлектрики отличаются более высокими значениями электрической прочности,
чем газы в нормальных условиях. В твердых диэлектриках чисто электрический пробой имеет место, когда исключено влияние электропроводности и диэлектрических потерь, обусловливающих нагрев материала, а также отсутствует ионизация газовых включений. Пробой диэлектриков – это резкое возрастание электропроводности диэлектрика в электрическом поле, напряженность которого превышает электрическую прочность и образование проводящего канала в диэлектрике. Пробой диэлектриков может сопровождаться их разрушением. Минимальное приложенное к диэлектрику напряжение, приводящее к его пробою, называют пробивным напряжением Uпр. Значение пробивного напряжения зависит от толщины диэлектрика h и формы электрического поля, обусловленной конфигурацией электродов и самого диэлектрика. Поэтому оно характеризует не столько свойства материала, сколько способность конкретного образца противостоять сильному электрическому полю. Если пробой произошел в газообразном диэлектрике, то благодаря высокой подвижности молекул пробитый участок после снятия напряжения восстанавливает свои электрические свойства. Пробой твердых диэлектриков заканчивается разрушением изоляции. Однако разрушение материала можно предупредить, ограничив нарастание тока при пробое допустимым пределом. Пробой диэлектриков может возникать в результате чисто электрических, тепловых, а в некоторых случаях и электрохимических процессов, обусловленных действием электрического поля. Механизмы пробоя диэлектриков зависят и от агрегатного состояния вещества. Виды пробоев в диэлектриках. Электротепловой пробой заключается в том, что при приложении электрического поля диэлектрик разогревается за счет диэлектрических потерь, а с увеличением температуры электрическое сопротивление диэлектрика увеличивается, т.е. увеличивается сквозной ток, а это в свою очередь приводит к разогреву диэлектрика вплоть до того, что меняются его механические свойства, он растрескивается, оплавляется и таким образом, при относительном низком напряжении может произойти электротепловой пробой диэлектрика. Электрохимический пробой заключается в том, что в диэлектриках под действием электрического поля и теплоты начинают происходить электрохимические процессы (электролиз, ионизация, окисление). Возможно образование веществ с низкой электрической прочностью. Особенно этот электрохимический пробой усиливается с увеличением температуры и влажности.
Поверхностный пробой – это пробой газа или жидкости вблизи поверхности твердого диэлектрика, т.е. Eпр твердого диэлектрика не нарушается, но образование проводящего канала на его поверхности существенно уменьшает рабочее напряжение изолятора. Чтобы уменьшить поверхностный пробой изоляторы делают ребристыми, что увеличивает длину разрядного пути вдоль поверхности твердого диэлектрика. На поверхности изолятора наносят полупроводниковый материал или диэлектрические пленки с большим ε или погружают в трансформаторное масло. 52) Нагревостойкость диэлектрика - способность диэлектрика выдерживать воздействие повышенной температуры в течение времени, сравнимого со сроком нормальной эксплуатации, без недопустимого ухудшения его свойств. В зависимости от значений допустимых в эксплуатации температур, диэлектрики различаются по классам нагревостойкости. Температурные индексы диэлектрических материалов зависят от их физических свойств и определяются классом нагревостойкости.
Холодостойкость диэлектрика – его способность сохранять свои диэлектрические свойства при низких температурах без недопустимых изменений своих диэлектрических качеств.
|
||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-04-19; просмотров: 887; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.149.28.7 (0.011 с.) |