ОПРЕДЕЛЕНИЕ ФИЗИОЛОГИИ КАК НАУКИ. МЕТОДЫ ФИЗИОЛОГИИ.



Мы поможем в написании ваших работ!


Мы поможем в написании ваших работ!



Мы поможем в написании ваших работ!


ЗНАЕТЕ ЛИ ВЫ?

ОПРЕДЕЛЕНИЕ ФИЗИОЛОГИИ КАК НАУКИ. МЕТОДЫ ФИЗИОЛОГИИ.



ОПРЕДЕЛЕНИЕ ФИЗИОЛОГИИ КАК НАУКИ. МЕТОДЫ ФИЗИОЛОГИИ.

Физиология – наука о жизнедеятельности целостного организма и его отдельных частей: клеток, тканей, органов, анатомофизических систем. Физиология изучает:

─ механизмы функционирования целостного организма;

─ связь органов и систем между собой;

─ механизмы приспособления к окружающей среде.

Организм представляет собой целостную саморегулирующуюся систему.

Методы физиологии в основном экспериментальные. Ставят эксперименты на животных. На людях также проводят различные наблюдения, например электрокардиографические (ЭКГ).

 

ПОНЯТИЕ ГОМЕОСТАЗА. ОСНОВНЫЕ ПРИНЦИПЫ ГОМЕОСТАЗА.

На заре эволюции жизнь зародилась в водной среде. С появлением многоклеточных организмов клетки утратили связь с внешней средой. Они окружены системой крово- и лимфообращения, по которым питательные вещества поступают из внешней среды, а также удаляются продукты жизнедеятельности.

У многоклеточных организмов возникла возможность поддерживать постоянство состава внутренней среды. Благодаря этому организм сохраняет различные характеристики своей среды (температуру, рН среды…).

Клодом Бернаром (франз. исслед.) был введен термин «гомеостаз» – постоянство внутренней среды организма. Принципы гомеостаза:

1. В основе гомеостаза лежит способность к саморегуляции функции, т.е. отклонение любого параметра гомеостаза является стимулом возвращения его к норме.

Действие t-го фактора организма (озноб)

2. Для сохранения гомеостаза в организме сущ-ет дублирование приспособительных механизмов.

3. Сигнальность об отклонении.

В случае изменения параметров внутренней среды специальные клетки (рецепторы) улавливают это изменение. Импульсы передаются в центральную нервную систему, оттуда сигналы идут к органам-наполнителям и включаются механизмы направленные на сохранение параметров в заданных границах.

Гомеостаз человека отличается от гомеостаза животных. Помимо физиологических механизмов человек использует социальные приспособления (одежда, обувь) для сохранения гомеостаза.

 

УРОВНИ СТРУКТУРНОЙ И ФУНКЦИОНАЛЬНОЙ ОРГАНИЗАЦИИ В ОРГАНИЗМЕ. ПОНЯТИЕ О КЛЕТКЕ, ВНУТРИКЛЕТОЧНЫХ СТРУКТУРАХ.

Клеточный

Клетка – это структурная и функциональная единица живых организмов. Впервые усовершенствовал микроскоп Роберт Гук в сер. 18 века. Установил, что растения построены из ячеек, он назвал их клетками. В 1839 г. Шванн обобщил накопленный материал и создал клеточную теорию строения живых организмов.

Наука, изучающая строение и функцию клеток, называется цитология.

Клетка состоит из цитоплазмы и ядра.

В цитоплазме различают: клеточную оболочку (мембрана); органеллы; включения; гиалоплазму

В ядре различают: ядерную оболочку; ядрышко; хроматиновые структуры; ядерный сок

Ядро.

Есть ядерная оболочка. Она образована двумя мембранами, отделенными друг от друга перпендикулярным пространством. Хроматин – это вещество, в котором присутствует ДНК. В составе ядра есть ядрышко (1-2). Происходит синтезРНК, синтез рибосом в клетке.

Значение ядра:

Особую роль играют хромосомы ядра. В них содержится генетический код каждой клетки. Благодаря этому обеспечивается точное воспроизведение признаков и свойств данной клетки.

Кроме этого, ядро участвует:

─ в процессах формирования клетки;

─ в процессах синтеза белка

─ в образовании рибосом и РНК

─ в регуляции окислительных процессов.

 

3. Цитоплазма

Цитоплазматическая мембрана отделяет содержимое клетки от окр. среды. Она же регулирует поступление веществ в клетку и удаление продуктов жизнедеятельности из нее. Проникновение веществ туда и обратно может происходить по законам диффузии, а может и путем активного транспорта против градиента концентрации с затратой энергии (2 процесса: фагоцитоз и пиноцитоз).

Фагоцитоз – поглощение клеткой твердых частиц. Пиноцитоз – жидкостей.

Органеллы.

1. Эндоплазматическая сеть – это система внутриклеточных канальцев, вакуолей, цистерн. Эта система контактирует с мембраной клетки, а также с ядерной оболочкой. Эта сеть предназначена для транспорта веществ внутри клетки.

Эндоплазматический ретикулум.

2. Рибосомы.

Плотные сферические гранулы, диаметр 0,015-0,02 микрометров.

Рибосомы – это место синтеза белка в клетке. Часть их располагается свободно, а часть расположена на эндоплазматической сети.

3. Митохондрии.

Небольшие гранулы длиной 0,5-7 мкм. имеют наружную мембрану и внутреннюю, которая имеет складчатое строение. Ее складки называют митохондриальными кристаллами. Митохондрии называют энергетическими станциями в клетке. В них происходят окислительные процессы, которые идут до образования конечных продуктов: углекислого газа и воды. При этом выделяющаяся энергия аккумулируется в виде АТФ. В митохондриях образуется 75% всей энергии клетки.

4. Внутриклеточный пластинчатый комплекс.

Расположен возле ядра, участвует в образовании секретов, выделяемых клетками, т.е. в удалении продуктов обмена веществ из клетки.

5. Лизосомы.

Величина 0,2-0.8 мкм. Содержит в большом количестве гидролитические ферменты (способны расщеплять белки, жиры, углеводы). При разрушении большого количества лизосом в клетке, клетка самопереваривается (уничтожение клетки). Генетически запрограммированная ветвь.

6. Центрисомы.

Располагаются около ядра. Принимают активное участие в делении клетки. Связаны с двигательной активностью клетки.

Включения – это обособленные скопления различных веществ в цитоплазме, они непостоянны. К ним относят: жировые камни, пигментные отложения и т. д.

Гиалоплазма – это свободное от органелл вещество цитоплазмы. Она гомогенна и лишена структуры.

 

ПОНЯТИЕ О СИСТЕМАХ. ФУНКЦИОНАЛЬНАЯ СИСТЕМА.

Органный уровень: в состав органов входит 2-4 типов тканей. Органы в организме выполняют определённые функции.

Анатомофизиологические системы

1. Опорно-двигательная система.

Образует состав тела, обеспечивает передвижение его частей от-но друг друга, перемещение организмов в пространстве, защита жизненно важных органов.

2. Дыхательная система.

Обеспечивает доставку кислорода к органам и тканям, и выделение угл. газа.

3. Сердечно-сосудистая система.

Обеспечивает движение крови и лимфы по кровеносным сосудам.

4. Пищеварительная система.

Функция переработки пищи, всасывание питательных вещ-в в кровь и лимфу.

5. Выделительная система.

Обеспечивает удаление продуктов обмена вещ-в из организма.

6. Эндокринная система.

Ее железы образуют гормоны, участвуют в гуморальной регуляции функций.

7. Половая система.

Выполняет функцию размножения.

8. Система органов чувств.

Воспринимает раздражение из внешнего мира и внутренней среды.

9. Нервная система.

Регулирует деятельность всех систем.

10. Функциональная система.

5. Петром Анохиным и его школой была изучена принципиальная организация целенаправленных реакций организма. Это не анатомическое образование. Она представляет собой совокупность нейронов нервных центров и разнообразных периферических органов, объединенных полезным результатом.

ПОДЖЕЛУДОЧНАЯ ЖЕЛЕЗА.

Поджелудочная железа относится к смешанным железам. В ней наряду с образованием ферментов, участвующих в процессах пищеварения (экзокринная функция), вырабатываются гормоны (эндокринная функция). Наиболее важными являются инсулин и глюкагон. Инсулин способствует переходу глюкозы из крови в клетки, где она используется как энергетический материал. В тоже время благодаря инсулину глюкоза откладывается (в про запас) в виде гликогена в печени, мышцах и при необходимости используется организмом. Инсулин увеличивает проницаемость клеток для аминокислот, что способствует синтезу белка. Благодаря инсулину в организме идет отложение жиров. Т. о. при нарушении выработки инсулина страдают все виды обменов веществ. Развивается заболевание – сахарный диабет. При этом повышается уровень сахара в крови в норме 3,1-5,5 ммоль/л, т. к. нарушается способность ткани использовать глюкозу (голод среди изобилия). При увеличении сахара в крови свыше 8 ммоль/л он появляется в моче. Называется глюкозурия. Это сопровождается увеличением диуреза 4-5 л. Это сахарное мочеизнурение. В крови нарушается обмен вещ-в, накапливаются промежуточные кислые продукты, что ведет к отравлению организма.

Второй гормон – глюкагон действует противоположно инсулину. Он усиливает расщепление гликогена в печени, и увеличивает содержание сахара в крови.

 

ФИЗИОЛОГИЯ КРОВИ

Система крови выполняет множество функций в организме:

1. газотранспортная

2. трофическая: аминокислоты, жирные кислоты, витамины, микроэлементы;

3. экскреторная: доставка продуктов обмена почкам и др органам выделения;

4. терморегуляторная;

5. кровь поддерживает стабильность ряда констант гомеостаза (рН);

6. обеспечивает водносолевой обмен между кровью и тканями

7. защитная функция;

8. гуморальная регуляция; кровью транспортируются гормоны и др физиологические вещества;

9. функциональная: обладает способностью свёртывания, что предотвращает организм от потери крови.

 

СОСТАВ И КОЛИЧЕСТВО КРОВИ

Кровь состоит из жидкой части (плазмы) и форменных элементов (эритроциты, лейкоциты, тромбоциты). Соотношение форменных элементов к плазме называется гематокритом.

40-45% - форменные элементы

55-60% - плазма

Общее количество крови взрослого человека 6-8% массы тела (4,5 л).

Объём циркулирующеё крови (ОЦК) относительно постоянен. Несмотря на поступления жидкости в организм и её выведения. Резкое уменьшение ОЦК на 1/5 может оказаться смертельным. Плазма крови содержит 90-92% Н2О и 8-10% сухого вещества. В основном белков и солей. В плазме имеются 3 группы белков: альбумины (4,5%) обеспечивают онкотическое давление крови, что удерживает жидкость в сосудистом русле; глобулины (1,7-3,5%) участвуют в иммунной защите организма; фибриноген (0,4%) участвует в системе свёртывания крови. Минеральные вещества плазмы крови составляют 0,9% (NaCl) – ионы N, К, Са, Мg, Cl и др.

 

Физико-химические свойства крови

Вязкость цельной крови в 5 раз выше вязкости воды. Она обусловлена наличием белков и форменных элементов крови. Иногда происходит сгущение крови, что значительно затрудняет её движение по сосудам и работу сердца. Возникает в случае потери организмом воды (потоотделение, патологическое (рвота, понос и т.д.)).

Осмотическое давление (ОД) – оно обусловлено солями. Чем › ионов растворённого вещества в растворе, тем выше ОД. Постоянство ОД очень важно для жизнедеятельности клеток. Если эритроциты поместить в раствор с высоким ОД, то они сморщиваются. А если с низким ОД, то они набухают и лопаются (гемолиз крови).

Онкотическое давление зависит от концентрации белка, размеров и их гидрофильности (способности удерживать воду). Очень важна такая характеристика крови как рН. Кровь имеет слабо щелочную реакцию. рН артериальной крови – 7,4; венозной – 7,35. Крайними пределами совместимыми с жизнью от 7 до 7,6. Но даже длительное смещение рН на 0,1 – 0,2 может оказаться губительным.

В нормальных условиях несмотря на большое поступление в организм кислот и щелочей, рН крови остаётся стабильной величиной. Это происходит благодаря наличию буферных систем. Любая буферная система образована слабой кислотой и слабым основанием. При избытке кислот происходит взаимодействие оснований, а при избытке оснований – взаимодействие с кислотой. В организме имеются следующие буферные системы: бикарбонатный буфер, фосфатный буфер, гемоглобиновый и белковый.

Большую роль в поддержании кислотно-щелочного равновесия играют лёгкие, печень и почки.

ФИЗИОЛОГИЯ КРОВООБРАЩЕНИЯ

Кровь и лимфа непрерывно движутся по сосудам тела, в результате осуществляется доставка тканям О2 и питательных веществ. Осуществляется гуморальная регуляция. По характеру циркулирующей жидкости сосудистую систему делят на: кровеносную и лимфатическую.

Кровеносная система состоит из центрального органа сердца и кровеносных сосудов. Кровеносные сосуды, идущие от сердца называются артериями, а идущие к сердцу – венами.

Артерии, разветвляясь и постепенно уменьшая диаметр, переходят в артериолы, затем в капилляры. В капиллярах и осуществляется обмен газами и питательными веществами с тканями, т.к. стенка капилляра состоит из 2-х слоёв: 1)базальной мембраны; 2) эндантемоцитов.

Капилляры переходят в венулы в вен и кровь возвращается в сердце.

Артериолы, капли и венулы являются основой микроциркулярного русла.

Кровь движется по малому и большому кругам кровообращения.

 

Большой круг

Служит для доставки органам и тканям О2 и питательных веществ. Начинается в левом желудочке, куда поступает артериальная кровь из левого предсердия. Из левого желудочка выходит самый крупный сосуд – аорта. Она располагается на артерии, артериолы, капилляры, которые окутывают все ткани организма. В капиллярах происходит отдача О2 и питательных веществ в ткани, кровь становится венозной. Капилляры соединяются в венулы => вены. Вена сливается в 2 крупных ствола: в верхнюю и нижнюю полые вены, которые впадают в правое предсердие. Здесь заканчивается большой круг кровообращения.

СЕРДЕЧНЫЙ ЦИКЛ

Сокращения отделов сердца называется систолой, а расслабление – диастолой.

Началом является сокращение предсердий. Это 1 фаза. При систоле предсердий давление крови повышается в них до 5-8 мм.рт.ст. и кровь поступает из предсердий в желудочки, где давление ниже. Длится систола 0,1 с. Затем наступает систола желудочка. А предсердия в этот момент расслабляются и начинается в этом состоянии 0,8 с. Систола желудочков состоит из 2х фаз: 1) фаза напряжения; 2) фаза изгнания.

Фазу напряжения в желудочках р продолжает повышаться, створчатые клапаны смыкаются, что препятствует обратному току крови, а когда р становится в желудочках выше, чем в аорте ствола, кровь под большим давлением выбрасывается в сосуды. При расслаблении р в аорте лёгочном стволе становится выше, смыкаются полулунные клапаны и кровь движется по сосудам. Систолы живут (желудочк) 0,3 сек, диаст – 0,5 сек. Диастола желудочков частично совпадает с диастолой предсердий. Полный сердечный цикл 0,8 сек.

 

РЕГУЛЯЦИЯ РАБОТЫ СЕРДЦА

Осуществляется нервным и гуморальным путём. Основной центр – сосудодвигательный, который находится в продолговатом мозге. К сердцу подходит симпатические и парасимпатические волокна. Симпатические волокна увеличивают силу, частоту и амплитуду сердечных сокращений. Парасимпатические волокна оказывают противоположный эффект. В регуляции сердца участ и кора мозга. Так у спортсменов на старте чсс соответствует частоте как во время бега. Различные эмоциональные проявления человека: гнев, радость, печаль – приводит к изменению чсс. На сердце реализуются многие межсердечные рефлексы, благодаря которым обеспечивается соответствие сердечной деятельности потребностям организма.

В самом сердце есть также большое количество рецепторов, которые располагаются во всех … слоях. Раздражение этих рецепторов изменяет работу сердца. Например, при растяжении кровью правого предсердия идёт учащение сердечных сокращений (рефлексы Бейнбриджа). Гуморальная регуляция усиливает и способствует увеличению чсс гормоны: адреналин, норадреналин, гормон щитовидной железы – тираксил. Замедляет работу сердца – ацетилхолин, имеет значение и содержание электролитов. Например, избыток К угнетает деятельность сердца. Избыток Са наоборот.

 

СОСУДИСТАЯ СИСТЕМА

Ближайшие к сердцу артерии выполняют функции проведения крови. Они превращают её в прерывистый ток в непрерывный. Поэтому в стенке крупных артерий развиты эластичные волокна и мембраны. Эти сосуды называются артериями эластичного типа. В средних и мелких артериях инерция сердечного выброса ослабевает. И для дальнейшего движения крови требуется собственное сокращение стенки. В стенках этих артерий много гладких мышечных волокон. Это артерии мышечного типа. Далее следуют артериолы. В местах их разветвлений находятся скопления мышечных клеток – это свинкторы. Благодаря им обеспечивается перераспределение кровотока в пользу работающих органов. Капилляры служат для обмена газа и питательных веществ. Благодаря медленному кровотоку и огромной площади соприкосновения с окружающими тканями капилляры обеспечивают обменные процессы. По венам кровь движется в противоположном направлении, чтобы не было ритоградного движения крови, в венах находятся клапаны. Все сосуды соответственно их строению и функции делят на 3 группы: 1) присердечные сосуды: начинаются и заканчиваются в отделах сердца (аорта, верхние и нижние полые вены, лёгочный ствол и лёгочные вены);

2) магистральные сосуды служат для распределения крови по организму. К ним относят экстроорганные артерии типа мышечных (волок), ЖКТ

3) внутриорганные сосуды (внутриорганные артерии и вены) и микроциркуляторные русла (артериолы, капилляры).

 

ВЕНТИЛЯЦИЯ ЛЁГКИХ

Это объём выдыхаемого и вдыхаемого воздуха в единицу времени. Обычно измеряют минутный объём дыхания (мод). При спокойном дыхании мод составляет 6-9 л.

Вентиляция лёгких зависит от глубины и частоты дыхания.

Газообмен в лёгких осуществляется в альбиолах. Вентиляция альбиол ‹ вентиляции лёгких на величину мёртвого пространства. При нагрузке более эффективно глубокое дыхание чем поверхностное, т.к. большая часть объёма воздуха при поверхностном дыхании тратится на вентиляцию мёртвого пространства.

МОД = 800 мл

ЧД = 16

ДВИЖЕНИЕ КРОВИ ПО СОСУДАМ

Благодаря сокращениям сердца кровь выталкивается в большой и малый круги кровообращения, т.к. кровеносные сосуды представляют собой систему трубок, то движение крови подчиняется законам гидродинамики. Согласно этим законам движения жидкости определяется: давлением, под которым движется жидкость и сопротивлением, которое испытывает жидкость при трении о стенки сосуда. Количество жидкости, протекающее через трубу прямо пропорционально разности давлений в начале и в конце трубы и обратно пропорционально сопротивлению.

Q= (P1-P2)/R

Т.к. р в конце системы = 0, следовательно, Q= P/R

P – кол-во ср. р в аорте;

Q – кол-во крови изгоняемое сердцем в мин.;

R – величина сосудистого сопротивления;

В отличие от движения жидкости по трубам кровь движется прерывистой струёй во время систолы. Но уже довольно быстро ток крови становится не прерывистым. Благодаря упругости стенок аорты, лёгочного ствола и крупных артерий. Часть кинетической энергии во время систолы затрачивается на растяжение стенок крупных артериальных сосудов. Когда систола заканчивается, стенки артерий в силу своей эластичности возвращается к исходному состоянию и обеспечивают р, которое в фазу диастолы перемещает кровь по сосудам. Периферическое сопротивление сосудистой системы складывается из множества сопротивлений каждого сосуда. Наибольшее сопротивление возникает в артериолах, поэтому систему артериол называют сосудами сопротивления или резистивными сосудами. Вследствие сопротивления уровень р в крови меняется. В крупных сосудах р падает ≈ на 10% от исходного уровня. А в артериолах и капиллярах на 85%. В малом круге кровообращения сопротивление в 5 ‹ чем в большом. Однако и в малом круге наибольшее сопротивление оказывают мельчайшие артерии и артериолы.

 

Кровяное депо

В состоянии покоя у человека до 40-60% всей массы крови находится в кровяных депо: в селезёнке, печени, подкожных сосудистых сплетениях, в лёгких. В случаях, когда в организме уменьшается парциальное р О2 в кровяное русло рефлекторно под влиянием сокращений селезёнки выходят форменные элементы крови, и объём циркулирующей крови (ОЦК) восстанавливается.

 

МЕХАНИЗМ ВДОХА.

Вдох обеспечивается сокращением наружных межрёберных мышц и диафрагмы. Межрёберные мышцы приподнимают рёбра одновременно сокращаются диафрагма. Всё это увеличивает объём грудной полости. При этом чем сильнее растягиваются лёгкие, тем ниже падает р в плевральной полости. Поступление воздуха в лёгкие обусловлено разностью его давлений в лёгких и окружающей среде. Поэтому происходит вдох. В конце вдоха эластическая тяга к грудной клетке начинает противодействовать вдоху.

МЕХАНИЗМ ВЫДОХА.

Акт выдоха начинается с расслабления наружной дыхательной мышцы диафрагмы. Под действием эластических сил лёгких и силы тяжести грудной клетки объём грудной клетки уменьшается. При этом р в плевральной полости повышается. Когда давление воздуха в лёгких становится выше атмосферного он удаляется в окружающую среду. Если выдох глубокий, то к перечисленным силам присоединяется сокращение внутренних межрёберных мышц, мышц живота, что способствует ещё большему уменьшению объёма грудной полости и повышению р в лёгких.

 

ОБМЕН ГАЗА В ЛЁГКИХ

В обычных условиях человек дышит атмосферным воздухом, который имеет относительный постоянный состав. В дых. воздухе О2 ‹, › СО2. Меньше всего О2 и больше СО2 в альбиолярном воздухе.

Различают 2 способа перемещения молекул газа в воздухоносных путях.

1. конвективный: обусловлен движением смеси газа по градиенту общего р. Так у человека от трахеи до альбиол насчитывается 23 ветвления бронхов. При этом S поперечного сечения в 4500 раз. Поэтому линейная скорость потока вдыхаемого воздуха по мере приближения к альбиолам значительно падает. В альбиолах присоединяется второй путь – диффузионный обмен, который обусловлен градиентом парциальных давлений дыхательных газов. Молекулы О2 перемещаются в направлении альбиол, а СО2 в обратном. Альбиолярный воздух является внутренней газовой средой организма. От его состава зависит газовый состав крови. Он мало изменяется при выдохе и вдохе. При каждом вдохе обновляется лишь 1/7 часть альбиолярного воздуха. Диффузия газа в кровь и наоборот определяется соотношением парциальных давлений в воздухе и крови. Парциальное давление газа в крови называется напряжением газа. Играет роль и коэффициент растворимости газа в жидкости. Он зависит от свойств газа объёма и р газа над жидкостью, от температуры жидкости, и количества растворённых в ней веществ. Альбиолярный воздух непосредственно не соприкасается с кровью, т.к. отделён тканевыми мембранами. Но условия для газообмена в лёгких благоприятные. Общая поверхность альбиол 100-120 м2. Толщина лёгочной мембраны 0,2-0,3 мкм. 300 млн альбиол соприкасается с таким же количеством капилляров. В лёгких наибольшая эффективность вентиляции в нижних участках. Здесь же более интенсивны перфузия крови.

ЗРИТЕЛЬНЫЙ АНАЛИЗАТОР.

Зрительный анализатор

Физиология зрения. Оптическая система глаза представляет собой в упрощенном виде систему линз, формирующих на сетчатке перевернутое и уменьшенное изображение внешнего мира. Диоптрический (светопреломляющий) аппарат глаза состоит из прозрачной роговицы, передней и задней камер, заполненных водянистой влагой, радужной оболочки, окружающей зрачок, хрусталика, окруженного прозрачной сумкой и стекловидного тела. В задней части глаза его внутренняя поверхность выстлана сетчаткой. У заднего полюса глаза человека в сетчатке есть небольшое углубление - центральная ямка, место, где острота зрения при дневном освещении максимальна. Процессы регуляции в диоптрическом аппарате глаза зависят от преломляющей способности хрусталика и от диаметра зрачка.

При постоянном освещении количество света, попадающее в глаз за единицу времени, пропорционально площади зрачка. При снижении внешней освещенности зрачок рефлекторно расширяется и наоборот. Диаметр зрачка человека зависит так же от расстояния до фиксируемого предмета. Настройка преломляющий силы диоптрического аппарата глаза человека на определенное расстояние до фиксируемого объекта (аккомодация) осуществляется за счет изменения кривизны хрусталика.

Рецепторный аппарат глаза. Сетчатка в ходе эмбриогенеза формируется как часть головного мозга. Зрительные клетки сетчатки – палочки и колбочки способны воспринимать световые лучи. У человека имеется 120 млн. палочек и 6 млн. колбочек. В палочках расположен зрительный пигмент родопсин. Колбочки содержат зрительный пигмент йодопсин. Колбочки сетчатки человека чувствительны к 3-м основным цветам спектра. Дальтонизм объясняется отсутствием колбочек одного или нескольких типов. При освещении молекулы зрительного пигмента, комплекс распадается и обесцвечивается. Распад молекулы пигмента запускает в клетке цепь биохимических реакций, которые приводят к возникновению рецепторного потенциала. Восстановление зрительных пигментов происходит в темноте.

Зрительная информация передается в головной мозг по аксонам ганглиозных клеток сетчатки, которые образуют зрительный нерв. Рецепторы, воспринимающие раздражение - палочки и колбочки сетчатки глаза. Они воспринимают яркость, контрастность, движение, размеры, цвет. Сетчатка содержит не только светочувствительные рецепторы, но так же несколько взаимосвязанных слоев нейронов, осуществляющих первичную переработку сигналов. Ни один другой из специализированных органов чувств не может одновременно воспринимать и перерабатывать информацию так, как это делает сетчатка.

Правый и левый зрительные нервы сливаются в основания черепа, образуя зрительный перекрест. После зрительного перекреста зрительный тракт оттуда к латеральным коленчатым телам. Затем к верхним холмам четверохолмия. Это вторичный уровень обработки (латеральное коленчатое тело, верхние бугры четверохолмия). Затем импульсы следуют к зрительной коре. Это третичный уровень (затылочная доля полушарий мозга).

Необходимые уровни освещенности нормируются в зависимости от точности выполняемых производственных операций, световых свойств рабочей поверхности и рассматриваемой детали, системы освещения. Достаточность освещенности является количественным показателем.

При уменьшении общей освещенности острота зрения уменьшается. Контрастность восприятия так же зависит от средней освещенности. Снижение остроты зрения - не единственное отрицательное последствие неадекватного освещения рабочего места. Из-за кажущейся нерезкости изображения адаптацией. Он протекает значительно быстрее. Однако если разница в освещенности слишком велика, может наступить временное ослепление.

 

Слуховой анализатор

Слуховые рецепторы находятся в улитке внутреннего уха, которая расположена в пирамиде височной кости. Звуковые колебания передаются к ним через целую систему образований: наружный слуховой проход, барабанную перепонку, слуховые косточки, жидкость лабиринта и основную перепонку улитки.

К наружному уху относятся: ушная раковина, наружный слуховой проход, барабанная перепонка. Функция проведение звука под действием которого начинает колебаться барабанная перепонка.

Среднее ухо отделено от внутреннего овальным окном тоже закрытым мембраной. Здесь размещается цепь, состоящая из 3-х косточек: молоточек, наковальня, стремечко. Основное их назначение - усиление давления звуковых волн на мембрану овального окна.

Во внутреннем ухе располагаются преддверие, полукружные, каналы и улитка. Улитка представляет собой костный спиральный, постепенно расширяющийся канал. По всей длине, почти до самого конца улитки, костный канал разделён 2-мя перепонками: вестибулярной и основной мембраной. На вершине улитки эти мембраны соединяются и в них имеется отверстие. Они разделяют костный канал улитки на 3 хода: верхний, средний, нижний. Средний ход не сообщается с полостью других каналов и заполнена эндолимфой. Внутри среднего канала улитки на основной мембране расположен звуковоспринимающий аппарат – кортиев орган, содержащий рецепторные волосковые клетки. Эти клетки трансформирую механические колебания в электрические. Дальше по слуховому нерву импульсы передаются во вторичный уровень - нижние бугры четверохолмия, медиальное коленчатое тело. Вторичный уровень — слуховая кора.

Слуховой анализатор определяет высоту и тембр. Высота звука зависит от частоты. Человек воспринимает звуки с частотой от 16 до 20 Гц. Люди с абсолютным слухом замечают различия в 1 -2 Гц.

Вестибулярный анализатор

Вестибулярная сенсорная система играет ведущую роль в пространственной ориентировке человека. Она передает и анализирует информацию об ускорениях или замедлениях, возникающих в процессе прямолинейного или вращательного движения, а так же при изменении положения головы в пространстве. Импульсы or вестибулорецепторов вызывают перераспределение тонуса скелетной мускулатуры, что обеспечивает сохранение тела в пространстве.

Периферическим отделом вестибулярного анализатора является вестибулярный аппарат, который располагается в лабиринте височной кости. Кроме вестибулярного аппарата в состав лабиринта входит улитка. Лабиринт представляет собой полукружные каналы, которые располагаются в трех взаимно перпендикулярных областях. Вестибулярный аппарат включает в себя так же 2 мешочка. В них располагаются рецепторные клетки, от которых отходят волоски. Эти волоски пронизывают мембрану желеобразную, содержащую кристаллы карбоната кальция – отолиты. При скольжении отолитовой мембраны по волоскам наступает возбуждение. В перепончатых каналах так же есть волосковые клетки, которые раздражаются эндолимфой. Отолитовый аппарат воспринимает ускорение прямолинейного движения. Рецепторная система полукружных каналов позволяет замечать ускорение вращения.

Волокна вестибулярного нерва направляют импульсы в продолговатый мозг. Отсюда сигналы направляются во многие отделы ЦНС; спинной мозг, мозжечок, глазодвигательные ядра, кору большого мозга, ретикулярную формацию и вегетативные ганглии. Следующий уровень соматосенсорная кора. Лабиринтный аппарат с помощью корковых отделов системы анализирует и запоминает направление движения, повороты и пройденное расстояние. При этом обеспечивается контроль и управление различными двигательными реакциями. Вовлекается так же сердечно-сосудистая система, ЖКТ, и др. органы.

65.ВКУСОВОЙ, ОБОНЯТЕЛЬНЫЙ АНАЛИЗАТОРЫ.

Обоняние

Рецепторы обонятельной сенсорной системы расположены в области верхних носовых ходов. Число обонятельных рецепторов у человека около 10 млн. На поверхности каждой клетки имеется сферическое утолщение обонятельная булава из которой выступает от 6 до 12 волосков. Они увеличивают в десятки раз площадь контакта с пахучими в-вами. В результате сложных реакций в рецепторе генерируется рецепторный потенциал. Который передается в обонятельную луковицу, оттуда через обонятельный тракт в различные области мозга, а оттуда в гипоталамус, лимбическую систему. Тракт очень сложный, что объясняет связь обонятельной системы с другими сенсорными системами и формирование на их основе ряда сложных форм поведения- пищевой, оборонительной, половой и т. д. Прямая связь с лимбической системой объясняет выраженный эмоциональный компонент обонятельных ощущений. Запахи могут вызывать удовольствие или отвращение. Нельзя недооценивать значение обонятельных стимулов в регуляции полового поведения. На животных показано, что ответы нейронов обонятельного тракта можно изменить инъекцией тестостерона.

Чувствительность обонятельного анализатора чрезвычайно велика; один обонятельный рецептор может быть возбужден одной молекулой пахучего вещества.

Вкусовой анализатор

Вкус, так же как и обоняние, основан на хеморецепции. Вкусовые рецепторы несут информацию о характере и концентрации веществ, поступающих в рот. Их возбуждение запускает сложную цепь реакций разных отделов мозга, приводящих к различной работе органов пищеварения или удалению вредных для организма веществ, попавших в рот с пищей.

Рецепторы вкуса – вкусовые почки – расположены на языке, задней стенке глотки, мягком нёбе, миндалинах и надгортаннике. Больше всего их на кончике языка, его краях и задней части. Каждая из примерно 10000 вкусовых почек человека состоит из нескольких (2-6) рецепторных клеток и, кроме того, из опорных клеток. Вкусовая почка имеет колбовидную форму, длинна и ширина её у человека 7*10 м (70 мкм), она не достигает поверхности слизистой оболочки языка и соединена с полостью рта через вкусовую пору.

Вкусовые клетки наиболее короткоживущие эпителиальные клетки организма (10 дней).

На поверхности языка можно выделить зоны специфической чувствительности. Горький вкус воспринимается основанием языка, кончик языка на сладкое, боковые поверхности на кислое и соленое. Причем зоны эти перекрываются.

Происходит преобразование энергии вкусовых веществ в энергию вкусового стимула, который по волокнам 7 и 9 пар черепно-мозговых нервов передаются в продолговатый мозг. Затем в таламус. Корковым представительством является постцентральная извилина головного мозга. Ряд корковых клеток реагирует только на вещества с одним вкусовым качеством, Другие клетки в этих центрах реагируют не только на вкус, но и на температурную и механическую стимуляцию языка.

Биологическая роль вкусовых ощущений заключается в проверке доброкачественности пищи и они влияют на процессы пищеварения. С возрастом способность к различению вкуса снижается. К этому ведут потребление БИА в виде кофеина и интенсивное курение.

ОПРЕДЕЛЕНИЕ ФИЗИОЛОГИИ КАК НАУКИ. МЕТОДЫ ФИЗИОЛОГИИ.

Физиология – наука о жизнедеятельности целостного организма и его отдельных частей: клеток, тканей, органов, анатомофизических систем. Физиология изучает:

─ механизмы функционирования целостного организма;

─ связь органов и систем между собой;

─ механизмы приспособления к окружающей среде.

Организм представляет собой целостную саморегулирующуюся систему.

Методы физиологии в основном экспериментальные. Ставят эксперименты на животных. На людях также проводят различные наблюдения, например электрокардиографические (ЭКГ).

 



Последнее изменение этой страницы: 2016-04-18; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.237.178.91 (0.034 с.)