Классификация и назначение терморегулирующих вентилей



Мы поможем в написании ваших работ!


Мы поможем в написании ваших работ!



Мы поможем в написании ваших работ!


ЗНАЕТЕ ЛИ ВЫ?

Классификация и назначение терморегулирующих вентилей



Введение

 

В числе направления совершенствования холодильных установок одно из ведущих мест принадлежит автоматизации, или, как сейчас принято говорить, автоматическому управлению. История развития холодильной техники тесно связана с параллельной разработкой и совершенствованием систем автоматического управления, внедрением электроники, а в самое последнее время - вычислительной и микропроцессорной техники.

Множество задач, которые решает автоматизация в холодильной технике, можно условно сгруппировать по целевым признакам. Главные из них:

1) повышения экономической эффективности холодильных установок;

2) поддержание заданных режимов технологических процессов;

3) обеспечение безопасности эксплуатации холодильных установок;

4) выдача информации о работе холодильных установок.

Указанные задачи часто выполняются одними и теми же методами и средствами.

Основным экономическим критерием, определяющий эффективность холодильной установки, является стоимость выработки единицы холода. Оно зависит от большого числа различных показателей. С помощью автоматизации можно влиять только на некоторые из них, а именно: трудоемкость обслуживания, расходы на электроэнергию и охлаждающую воду.

Трудоемкость обслуживания можно уменьшить, если создать рациональную и надежную систему автоматизации холодильной установки, что позволит сократить численность обслуживающего персонала или вообще отказа от непрерывного наблюдения и привести к периодическому обслуживанию.

Расходы на электроэнергию можно снизить настройкой системы автоматизации холодильной установки на такие режимы, которые обеспечивают наименьшее потребление электроэнергии. Такими режимами являются,

 

 

например, работа при самых высоких допустимых температурах кипения, своевременное оттаивание инея с охлаждающих поверхностей, отключение ненужных в данный момент потребителей электроэнергии (насосов, вентиляторов, и др.), максимальная выработка холода в периоды сниженных тарифов на электроэнергию (в ночное время).

Расходы на охлаждающую воду уменьшают своевременным отключением неработающих потребителей, а также подачей оптимального количества воды на охлаждения конденсатора.

Таким путем создаются условия, при которых будут минимальными потери пищевых продуктов в процессе их холодильной обработки и особенно хранения.

Совокупным использованием средств автоматики и рациональных технологических приемов решают конкретные задачи.

Объектом данной курсовой работы является терморегулирующий вентиль (ТРВ) с внешним уравниванием, а предметом – организация монтажа и технического обслуживания терморегулирующего вентиля (ТРВ) с внешним уравниванием.

Цель данной курсовой работы является изучить технологию монтажа и технического обслуживания терморегулирующего вентиля (ТРВ) с внешним уравниванием.

Задачи курсовой работы:

А) изучить конструктивные особенности и принцип работы терморегулирующего вентиля (ТРВ) с внешним уравниванием;

Б) основные приницпы монтажа и технического обслуживания терморегулирующего вентиля (ТРВ) с внешним уравниванием;

В) сформулировать основные правила техники безопасности при обслуживании и монтаже приборов автоматики, к которым относится терморегулирующего вентиля (ТРВ) с внешним уравниванием.

Общая часть

Специальная часть

Устройство ТРВ с внешним уравниванием

 

Для больших холодильных машин используется более совершенная система регулировки - ТРВ с внешним регулированием (см. рис. 2). Она позволяет точно поддерживать давление испарения, если изменяется гидравлическое сопротивление испарителя.

Рис. 2. Терморегулирующий вентиль с внешним выравниванием:

1 — накидные гайки; 2— корпус; 3 — сопло; 4 — ходовая втулка; 5 — ходовой винт; 6 — колпачковая гайка; 7 — термобаллон; 8—сальник ходового винта; 9— гайка; 10— крышка мембраны; 11 — капиллярная трубка; 12— мембрана; 13 — сальник штока; 14— шток; 15—пружина; 16— клапан; 17— фильтр; 18— штуцер уравнительной линии.

 

Давление в такой системе измеряется не за клапаном регулятора, а уже на выходе из испарителя. Для этого в состав регулятора входит дополнительная трубка.

В результате такого подключения поддерживается постоянное давление испарения хладагента и перегрев, даже при изменении гидравлического сопротивления в испарителе.

Рисунок 3. Принцип функционирования ТРВ с внешним выравниванием давления. Вверху виден вход капиллярной трубки от линии выравнивания ниже мембраны клапана.

 

При выравнивании этих трех векторов давления клапан остается постоянно открытым, и, соответственно, постоянным остается поток проходящего через него холодильного агента. В этих условиях количество холодильного агента, поступающего в испаритель, точно соответствует необходимому для восприятия тепловой нагрузки. Если же нагрузка понижается, происходят два процесса: холодильного агента становится избыточно много, а его давление повышается; понижается температура газа на выходе и пропорционально этому понижается давление в датчике. Вследствие этих процессов сумма давлений испарителя и пружины превышает давление, оказываемое на датчик клапана, что приводит к закрыванию клапана с уменьшением зазора для прохождения холодильного агента. Наоборот, если тепловая нагрузка в испарителе возрастает, количества холодильного агента в нем оказывается недостаточно, и давление его уменьшается; одновременно увеличивается температура газа на выходе из испарителя, что вызывает соответствующее повышение давления на датчик клапана. В результате давление в клапане смещает мембрану вниз, что приводит к открытию зазора для прохождения жидкого холодильного агента, увеличивая объем его поступления в испаритель.

 

Рис. 4. Расположение элементов ТРВ

2. Термобаллон должен быть установлен на трубопроводе всасывания так, чтобы его температура соответствовала температуре газа, выходящего из испарителя. Температура корпуса ТРВ должна быть выше температуры термобаллона.

3. Размещение термобаллона зависит от диаметра трубопровода всасывания (рис. 5):

ü диаметр трубопровода < 5/8" (15,88 мм) — на "12–13 часов";

ü диаметр трубопровода от 3/4" (18 мм) до 7/8" (22 мм) — на "14 часов";

ü диаметр трубопровода от 1" (25,4 мм) до 1 3/8" (35 мм) — на "15 часов";

ü диаметр трубопровода более 1 3/8" (35 мм) — на "16 часов".

Рис. 5. Расположение термобаллона ТРВ на трубе

4. Нельзя устанавливать термобаллон внизу трубы или на маслоподъемной петле, так как находящееся там масло искажает реальную температуру газа.

5. Укреплять термобаллон следует только с помощью специального хомута, прилагаемого в комплекте с ТРВ. Применение другого крепежного материала категорически запрещается из-за деформации температурного поля и возможности ослабления контакта термобаллона с трубопроводом. Крепежный хомут должен быть затянут настолько, чтобы термобаллон нельзя было провернуть рукой.

6. Термобаллон должен устанавливаться как можно ближе к выходу испарителя на горизонтальном участке (рис. 6). При установке термобаллона на вертикальном участке в момент запуска кондиционера жидкость, скопившаяся в нижней части трубопровода и в маслоподъемной петле, начинает испаряться, сильно охлаждая всасывающую магистраль. В результате могут возникнуть пульсации ТРВ. Если нет возможности установить термобаллон на горизонтальной трубе, то, как исключение, термобаллон может быть установлен так, чтобы поток хладагента был направлен сверху вниз. Капиллярная трубка должна подходить к термобаллону сверху, а термобаллон должен быть направлен вниз.

Рис. 6. Установка термобаллона и трубки уравнивания давления ТРВ

7. Термобаллон нельзя располагать на месте пайки трубопровода.

8. Термобаллон должен быть тщательно теплоизолирован, чтобы наружный воздух не влиял на работу ТРВ.

9. Перед установкой термобаллона на трубопроводе места прилегания должны быть тщательно очищены. Желательно на место прилегания нанести теплопроводную пасту.

10. Уравнивающая труба ТРВ должна подходить к трубопроводу сверху и устанавливаться на расстоянии 100 мм от термобаллона.

11. Расстояние от уравнивающей трубки до маслоподъемной петли должно быть не менее 100 мм.

12. Если хладагент подается в испаритель черезраспределитель жидкости, то длины всех трубок, соединяющих распределитель с соответствующими секциями испарителя, должны быть одинаковыми.

13. Пайку неразборного ТРВ следует производить при охлаждении корпуса ТРВ смоченной ветошью. Разборный ТРВ можно паять только в разобранном виде, сняв верхнюю часть корпуса и дроссельный клапан.

Рис. 7. Типовой монтаж ТРВ:

1 — испаритель; 2 — манометр; 3 — регулировочный винт; 4 — капиллярная трубка термобаллона; 5 — уравнивающая трубка; 6 — жидкостная магистраль; 7 — термобаллон; 8 — газовая магистраль; 9 — маслоподъемная петля; 10 — место спая трубопровода

 

 

Настройка ТРВ

 

В большинстве документов указывается что ТРВ настроены на заводе-изготовителе и как правило не требуют дополнительной регулировки. Вместе с тем, возникает вопрос: как настроить ТРВ если по какой-либо причине появится необходимость дополнительной регулировки''.

Дополнительно к обычно используемым манометрам нужно установить электронный термометр, датчик которого следует укрепить на термобаллоне ТРВ (см. рис. 8).

Рис. 8. Крепление датчика на термобаллоне ТРВ

Чтобы сохранить стабильность настройки во времени, необходимо производить ее при температуре в охлаждаемом объеме близкой к температуре отключения компрессора. (настройка, обеспечивающая стабильность при температуре 25 °С, может привести к пульсациям при температуре 20 0С).

Не допускается производить настройку ТРВ при высокой температуре в охлаждаемом объеме!

Рекомендуемая технология настройки заключается в том, чтобы сначала вывести ТРВ на предельный режим, при котором начнутся пульсации.

· Для этого при постоянной величине перегрева (показания термометра и манометра НД не меняются) нужно медленно открывать ТРВ до тех пор, пока не начнутся пульсации.

· Если при этом появляются пульсации перегрева (пульсации показаний термометра и манометра), нужно закрывать ТРВ до тех пор, пока пульсации не прекратятся.

Никогда не следует вращать регулировочный винт больше, чем на один оборот (предельный режим приводящий к пульсациям, может наступить при вращении винта на 1/4 или даже на 1/8 оборота). После каждого изменения настроики (поворота регулировочного винта) следует выждать не менее 15 минут (в дальнейшем это позволит сэкономить время на настройку).

Когда установка выйдет на пульсирующий режим, достаточно слегка закрыть ТРВ (например, на пол-оборота).

В любом случае ТРВ будет настроен на минимально возможный перегрев, который обеспечивается данной установкой, заполнение испарителя жидким хладагентом будет оптимальным, а пульсации прекратятся.

В течение настройки давление конденсации должно оставаться относительно стабильным, но его величина должна быть максимально приближена к номинальным условиям работы, так как от нее зависит производительность ТРВ.

При настройке могут возникнуть две сложности:

1) Не удается добиться пульсаций. Это означает, что ТРВ, будучи даже полностью открытым, имеет производительность ниже, чем производительность испарителя.

В общем случае это может происходить по следующим причинам: либо проходное сечение ТРВ слишком мало, либо в установке не хватает хладагента, либо на вход в ТРВ поступает недостаточно жидкости.

2) Не удается исключить пульсации после их возникновения. Это означает, что ТРВ будучи даже полностью закрытым, сохраняет производительность выше, чем производительность испарителя.

В общем случае это связано с тем, что либо проходное сечение ТРВ слишком велико, либо испарителю не хватает производительности.

Настройка прекращается, когда перегрев достигает слишком большого значения (это наступает когда ТРВ практически перекрыт давление кипения аномально малое и полный перепад температур слишком большой). Это означает, что испаритель производит меньше паров, чем способен поглотить компрессор, то есть мощность испарителя недостаточна.

Настройка ТРВ может оказаться трудоемким и длительным процессом, поэтому нельзя приступать к процедуре настройки, не будучи абсолютно уверенными в глубоком понимании рекомендаций.

Во всех случаях, перед началом настройки ТРВ, обязательно в качестве меры предосторожности следует заметить начальную настройку (начальное положение регулировочного винта) и точно подсчитать число оборотов регулировочного винта, которое вы сделали (точная регулировка может быть обеспечена поворотом винта всего на 1/8 оборота).

 

Заключение

Терморегулирующий вентиль (ТРВ) - это наиболее широко используемый регулятор расхода хладагента в больших промышленных и торговых системах.

У ТРВ высокая рабочая производительность, и они подходят к любому типу хладагента. Принимая во внимание, что действие автоматического регулирующего вентиля основано на поддержании постоянного давления в испарителе, действие ТРВ основано на поддержании постоянного количества перегрева в испарителе, что позволяет ему заполнить испаритель самым эффективным количеством жидкого хладагента при любой нагрузке. При этом нет опасности попадания жидкости во всасывающий трубопровод и компрессор.

В результате его способности обеспечивать полное и эффективное использование поверхности испарителя при всех нагрузках, ТРВ особенно подходит для систем с частыми изменениями нагрузки.

Термобаллон плотно прижат к всасывающему трубопроводу на выходе из испарителя, чтобы он мог реагировать на изменения температуры пара хладагента. Хотя существует небольшая разница температуры пара хладагента во всасывающем трубопроводе и температуры хладагента в термобаллоне, на практике данные температуры считаются равным. Следовательно, давление жидкости в термобаллоне с парожидкостной смесью почти равно давлению пара хладагента во всасывающем трубопроводе. Количество желаемого перегрева зависит от силы пружины заданного значения. Так как клапан поддерживает количество перегрева, регулировку пружины называют регулировкой перегрева.

 

 

Введение

 

В числе направления совершенствования холодильных установок одно из ведущих мест принадлежит автоматизации, или, как сейчас принято говорить, автоматическому управлению. История развития холодильной техники тесно связана с параллельной разработкой и совершенствованием систем автоматического управления, внедрением электроники, а в самое последнее время - вычислительной и микропроцессорной техники.

Множество задач, которые решает автоматизация в холодильной технике, можно условно сгруппировать по целевым признакам. Главные из них:

1) повышения экономической эффективности холодильных установок;

2) поддержание заданных режимов технологических процессов;

3) обеспечение безопасности эксплуатации холодильных установок;

4) выдача информации о работе холодильных установок.

Указанные задачи часто выполняются одними и теми же методами и средствами.

Основным экономическим критерием, определяющий эффективность холодильной установки, является стоимость выработки единицы холода. Оно зависит от большого числа различных показателей. С помощью автоматизации можно влиять только на некоторые из них, а именно: трудоемкость обслуживания, расходы на электроэнергию и охлаждающую воду.

Трудоемкость обслуживания можно уменьшить, если создать рациональную и надежную систему автоматизации холодильной установки, что позволит сократить численность обслуживающего персонала или вообще отказа от непрерывного наблюдения и привести к периодическому обслуживанию.

Расходы на электроэнергию можно снизить настройкой системы автоматизации холодильной установки на такие режимы, которые обеспечивают наименьшее потребление электроэнергии. Такими режимами являются,

 

 

например, работа при самых высоких допустимых температурах кипения, своевременное оттаивание инея с охлаждающих поверхностей, отключение ненужных в данный момент потребителей электроэнергии (насосов, вентиляторов, и др.), максимальная выработка холода в периоды сниженных тарифов на электроэнергию (в ночное время).

Расходы на охлаждающую воду уменьшают своевременным отключением неработающих потребителей, а также подачей оптимального количества воды на охлаждения конденсатора.

Таким путем создаются условия, при которых будут минимальными потери пищевых продуктов в процессе их холодильной обработки и особенно хранения.

Совокупным использованием средств автоматики и рациональных технологических приемов решают конкретные задачи.

Объектом данной курсовой работы является терморегулирующий вентиль (ТРВ) с внешним уравниванием, а предметом – организация монтажа и технического обслуживания терморегулирующего вентиля (ТРВ) с внешним уравниванием.

Цель данной курсовой работы является изучить технологию монтажа и технического обслуживания терморегулирующего вентиля (ТРВ) с внешним уравниванием.

Задачи курсовой работы:

А) изучить конструктивные особенности и принцип работы терморегулирующего вентиля (ТРВ) с внешним уравниванием;

Б) основные приницпы монтажа и технического обслуживания терморегулирующего вентиля (ТРВ) с внешним уравниванием;

В) сформулировать основные правила техники безопасности при обслуживании и монтаже приборов автоматики, к которым относится терморегулирующего вентиля (ТРВ) с внешним уравниванием.

Общая часть

Классификация и назначение терморегулирующих вентилей

 

ТРВ (терморегулирующие вентили) (рис. 1) – предназначены для автоматического регулирования расхода холодильного агента, поступающего в испаритель. Терморегулирующие вентили особенно подходят для подачи жидкости в сухие испарители. ТРВ защищают электродвигатель компрессора от чрезмерно высокого давления кипения.

Рис. 1. Терморегулирующий вентиль (общий вид)

 

Терморегулирующий вентиль – это точный прибор, регулирующий подачу хладагента в испаритель в зависимости от интенсивности кипения хладагента в испарителе. Он препятствует попаданию жидкого хладагента в компрессор. Например, если испаритель работает на R12 и при этом давление всасывания составляет 0,25 МПа, то температура насыщения при 0,25 МПа равна 4 °С. При этом, пока хладагент пребывает в жидком состоянии, его температура будет оставаться в пределах 4 °С. В одной и той же установке можно использовать несколько испарителей.

При выборе оптимального ТРВ для конкретной холодильной установки, необходимо учитывать температуру испарения, а также полные потери в ТРВ. Они равны разности давления конденсации и испарения за исключением потерь:

  • давления на распределительных патрубках и самом распределителе;
  • давления в жидкостном трубопроводе;
  • давления на различных элементах в жидкостном трубопроводе (осушителе, электроклапанах, вентилях, смотровом окне и пр.).

Существуют терморегулирующие вентили с внешним и внутренним уравниванием. Для уменьшения давления в испарителе в первом случае добавляют внешнюю трубку, которая связана с выходом из испарителя. ТРВ с внешним уравниванием отличается трубой, предназначенной для передачи давления хладагента. Она изменяет давление в испарителе и подает его к мембране со стороны пружины. Получается, что он поддерживает баланс между силой пружины – давления на выходе из испарителя — и в термобаллоне.

Терморегулирующие вентили с внутренним выравниванием используются в торговых и промышленных системах. Они подходят к любому хладагенту и имеют высокую производительность. Действие ТРВ основано на поддержании перегрева в испарителе — он позволяет ему заполнить испаритель необходимым количеством жидкого хладагента независимо от имеющейся нагрузки. Также нет опасности, что жидкость может попасть в компрессор или всасывающий трубопровод. В результате обеспечивается максимально эффективное применение поверхности испарителя. Данный вид ТРВ подходит для систем с часто меняющимися нагрузками.

 

 

Специальная часть



Последнее изменение этой страницы: 2016-04-18; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.92.96.236 (0.019 с.)