Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Генные болезни и их классификация↑ Стр 1 из 4Следующая ⇒ Содержание книги Поиск на нашем сайте
Генные болезни и их классификация Генные заболевания – неустранимое свойство всего живого. Большая часть генных болезней связана с генами, доставшимися нам от самых примитивных организмов. Миллиарды лет эволюции не сделали ни отдельные гены, ни выполняемые ими функции устойчивее к мутациям. Разные гены нашего организма возникли на разных этапах эволюции, причём большинство присутствовало ещё у самых-самых далёких предков «венца творения». Трудно поверить, но более половины наших генов в том или ином виде присутствовали ещё у одноклеточных организмов, причём большая часть этой половины возникла даже до появления у клеток ядер. А вот всё развитие млекопитающих добавило лишь около 10% от общего числа генов в нашем организме. Простая логика подсказывает, что от самых древних организмов человеку достались гены, ответственные за самые базовые клеточные процессы. Потому мутации в них должны приводить к дефектам, несовместимым с жизнью, и в категорию «врождённых», предполагающую это самое рождение, попасть не могут. Биологам развития давно известен ген Brachyury, продукт которого регулирует у животных развитие первичного эмбрионального рта (бластопора), среднего зародышевого листка (мезодермы), а у представителей типа хордовых — хорды. Долгое время считалось, что ни у кого, кроме многоклеточных животных, гена Brachyury нет. Но теперь известно, что этот ген есть у многих одноклеточных организмов и грибов; по-видимому, наличие генов, подобных Brachyury, является общим уникальным признаком эволюционной ветви заднежгутиковых (Opisthokonta), к которой относятся многоклеточные животные, грибы и их одноклеточные родственники. Причем функция этого гена очень стабильна: экспериментально показано, что продукт гена Brachyury, взятый от амебы Capsaspora, способен участвовать в развитии лягушки. Кроме того, эти гены миллиарды лет находились под влиянием процесса селекции и могли бы уж как-то «устаканиться» в виде, для которого мутации не так важны. Причины Большинство генных патологий обусловлено мутациями в структурных генах, осуществляющих свою функцию через синтез полипептидов — белков. Любая мутация гена ведет к изменению структуры или количества белка. мутантный аллель → измененный первичный продукт → цепь биохимических процессов в клетке → органы → организм В результате мутации гена на молекулярном уровне возможны следующие варианты: · синтез аномального белка; · выработка избыточного количества генного продукта; · отсутствие выработки первичного продукта; · выработка уменьшенного количества нормального первичного продукта. Не заканчиваясь на молекулярном уровне в первичных звеньях, патогенез генных болезней продолжается на клеточном уровне. При различных болезнях точкой приложения действия мутантного гена могут быть как отдельные структуры клетки — лизосомы, мембраны, митохондрии, пероксисомы, так и органы человека. Клинические проявления генных болезней, тяжесть и скорость их развития зависят от особенностей генотипа организма, возраста больного, условий внешней среды (питание, охлаждение, стрессы, переутомление) и других факторов. Особенностью генных (как и вообще всех наследственных) болезней является их гетерогенность. Это означает, что одно и то же фенотипическое проявление болезни может быть обусловлено мутациями в разных генах или разными мутациями внутри одного гена. Впервые гетерогенность наследственных болезней была выявлена С. Н. Давиденковым в 1934 г. Общая частота генных болезней в популяции составляет 1-2 %. Условно частоту генных болезней считают высокой, если она встречается с частотой 1 случай на 1000 новорожденных, средней — 1 на 10000 — 40000 и далее — низкой. Моногенные формы генных заболеваний наследуются в соответствии с законами Г. Менделя. По типу наследования они делятся на аутосомно-доминантные, аутосомно-рецессивные и сцепленные с Х- или Y-хромосомами. Классификация К генным болезням у человека относятся многочисленные болезни обмена веществ. Они могут быть связаны с нарушением обмена углеводов, липидов, стероидов, пуринов и пиримидинов, билирубина, металлов и др. Классификация генных болезней отражает тип наследования признака и локализацию соответствующего ему гена. Нарушения липидного обмена Многочисленные заболевания, классифицируемые в определенные группы. Ганглиозидозы – накопление ганглиозида, поражающее в первую очередь клетки головного мозга. Наиболее известна из этой группы болезнь Тея – Сакса. Сфингомиелолипидозы – накопление сфингомиелина с поражением преимущественно клеток внутренних органов (болезнь Гоше, болезнь Ниманна – Пика и др.). Лейкодистрофии – нарушения метаболизма липидов, входящих в состав миелина, вследствие дефекта определенных ферментов. Известны различные клинические формы, приводящие к гибели нервных клеток и поражению головного мозга. Другие нарушения метаболизма. Описаны многочисленные генные заболевания, связанные с нарушением обмена металлов, желчных пигментов, транспортных белков, кортикостероидов и других веществ. Рассмотрим некоторые из них. Адреногенитальный синдром. Описано несколько типов синдрома в зависимости от характера биохимических нарушений различных ферментов стероидогенеза. Характерно резкое повышение уровня АКТГ в крови, что приводит к гиперплазии надпочечников и интенсивной секреции андрогенов. Адреногенитальный синдром является основной причиной женского гермафродитизма (при кариотипе XX). У мальчиков он стимулирует преждевременное половое созревание. Гемоглобинопатии. Они вызваны определенными мутациями в глобиновых цепочках гемоглобина. Наглядным примером является серповидно-клеточная анемия, вызванная изменением структуры -глобиновой цепочки и образованием дефектного гемоглобина HbS. Гомозиготы по этой мутации погибают в раннем детстве, но гетерозиготы имеют большую устойчивость к малярии, что являлось фактором отбора в районах с повышенным риском малярии. Муковисцидоз. Мутация гена, локализованного на хромосоме 7 в середине длинного плеча и кодирующего белок, регулирующий мембранный транспорт эпителиальных клеток. Болезнь проявляется хроническими инфекциями пищеварительной и дыхательной систем. Следствием мутации гена является нарушение структуры и функции белка, получившего название муковисцидозного трансмембранного регулятора проводимости (МВТП). Следствием этого является сгущение секретов желёз внешней секреции, затруднение эвакуации секрета и изменение его физико-химических свойств, что, в свою очередь, и обусловливает клиническую картину заболевания. Изменения в поджелудочной железе, органах дыхания, желудочно-кишечном тракте регистрируются уже во внутриутробном периоде и с возрастом пациента неуклонно нарастают. Выделение вязкого секрета экзокринными железами приводит к затруднению оттока и застою с последующим расширением выводных протоков желез, атрофией железистой ткани и развитием прогрессирующего фиброза. Активность ферментов кишечника и поджелудочной железы значительно снижена. Прогноз обычно неблагоприятный. Летальность составляет 50—60 %, среди детей раннего возраста — выше. При поздней диагностике и неадекватной терапии прогноз значительно менее благоприятный. Муковисцидоз наследуется по аутосомно-рецессивному типу и регистрируется в большинстве стран Европы с частотой 1:2000-1:2500 новорождённых. В России в среднем частота болезни 1:10000 новорождённых. Если оба родителя гетерозиготные (являются носителями мутировавшего гена), то риск рождения больного муковисцидозом ребёнка составляет 25 %. Носители только одного дефектного гена (аллели) не болеют муковисцидозом. По данным исследований, частота гетерозиготного носительства патологического гена равна 2-5 %. Вариантом лечения хронической лёгочной недостаточности при муковисцидозе является трансплантация лёгких. Теоретическим обоснованием данной методики является отсутствие дефектного гена в клетках донорской ткани. Практически имеет смысл только одномоментная пересадка лёгких донора, а не частичная замена долей либо одного лёгкого пациента донорским. Муковисцидоз является системным заболеванием, при котором в ряде случаев происходит одномоментное симметричное двустороннее поражение ткани лёгких. Кроме того, после успешно выполненной пересадки только одного лёгкого инфекционные процессы оставшегося (второго лёгкого пациента) способны распространяться на донорское, с последующим его повреждением и развитием рецидива дыхательной недостаточности. Также следует отметить, что трансплантация лёгких реципиенту, страдающему от клинических проявлений муковисцидоза, способна существенно улучшить его качество жизни лишь в случае, когда поражение других органов и систем ещё не достигло стадии необратимых изменений. В противном случае клинический эффект оперативного вмешательства будет ограничен коррекцией лишь одного из проявлений системного заболевания. Следует помнить, что успешная пересадка донорских лёгких устраняет лишь лёгочные проявления заболевания и не способна излечить муковисцидоз: лечение основной патологии необходимо продолжать пожизненно. Диагностика Биохимический метод используется для обнаружения наследственных дефектов метаболизма. Конечная цель – выявление первичных продуктов действия мутантных генов. ¢ При биохимической диагностике используют как классические методы - электрофорез, хроматография, спектроскопия, так и современные высокоточные – массспектрометрия, магнитно-резонансная спектрометрия, бомбардировка быстрыми нейтронами. ¢ «Объектами» биохимической диагностики являются биологические жидкости: моча, пот, плазма и сыворотка крови, эритроциты, лейкоциты, культура фибробластов, лимфоцитов. Прямая ДНК-диагностика Данная диагностика предполагает непосредственное выявление мутации в исследуемом гене. В настоящее время большинство протоколов прямой ДНКдиагностики базируется на полимеразной цепной реакции. Метод ПЦР заключается в циклическом синтезе in vitro строго заданных, ограниченных участков ДНК. Это позволяет в течении 3-5 часов получить огромное число копий искусственно синтезированных молекул нужной последовательности. По сути, метод ПЦР как бы «имитирует» на ограниченном участке гена естественный процесс репликации ДНК. Затем происходит исследование конкретных особенностей амплифицированного участка гена. Например так, при заболеваниях обусловленных экспансией тринуклеотидов, продукты амплификации различаются по своей длине и, как следствие – по их скорости движения в геле. Благодаря этому достигается четкое электрофоретическое разделение нормальных и мутантных аллелей. Косвенная ДНК-диагностика Непрямая «косвенная» ДНК-диагностика используется при заболеваниях, ген которых достаточно точно картирован, то есть локализован в конкретном узком участке определенной хромосомы. Сущность метода заключается в анализе наследования у больных и здоровых членов семьи полиморфных генетических маркеров, сцепленных с геном болезни. В качестве таких маркеров выступают участки ДНК, существующие в виде аллельных вариантов и различающиеся у разных лиц по структуре. Благодаря этому возможно дифференцировать материнское и отцовское происхождение конкретного варианта маркера при анализе ДНК пациента. Маркер располагается в близости от патологического гена, поэтому маркер и ген болезни после кроссинговера остаются в составе одного хромосомного сегмента и передаются потомству как единое целое. Благодаря анализу удается проследить в ряду поколений наследование каждой их родительских Х-хромосом. Показания: 1. для диагностики гемофилии, гемоглобинопатий, митохондриальных болезней, муковисцедоза, фенилкетонурии, миопатоии Дюшенна; 2. для определения происхождения популяции людей; 3. в практике судебной медицины; 4. для определения отцовства или степени родства; 5. для генетического анализа клеток костного мозга при трансплантации, 6. для расшифровки генома. Лечение Терапия наследственных заболеваний - комплекс средств и методов коррекции и предотвращения наследственных заболеваний. Включает методы метаболомики, генотерапии, диетотерапии и др. Наследственным заболеваниям свойственны различные клинические проявления, и их лечение во многом является симптоматическим. Отдельные нарушения метаболизма исправляют назначением специальных диет, направленных на уменьшение токсических веществ в организме, накопление которых обусловлено мутациями в определённых генах. Например, при фенилкетонурии назначают безаланиновую диету. Симптоматическое лечение Для ослабления симптомов наследственных болезней, связанных с дефектом определённого белка, вводят внутривенно такую его функциональную форму, которая не вызывает иммунной реакции. Такая замещающая терапия применяется при лечении гемофилии, тяжёлого комбинированного иммунодефицита и др. Иногда для компенсации определённых утраченных функций проводят трансплантацию костного мозга и других органов. Существующая терапия в подавляющем большинстве случаев мало эффективна, а само лечение следует проводить многократно, несмотря на его высокую стоимость. Так же существуют малоизученные неизлечимые болезни. Одна из них - Фибродисплазия - «Мягкая соединительная ткань, которая прогрессивно превращается в кость». Очень редкое и тяжёлое по своему течению генетическое заболевание, при котором мышцы, сухожилия и связки постепенно превращаются в кости. Процесс прогрессирует с годами, начинаясь обычно в пределах десятилетнего возраста у детей с мутацией определенного гена. Генная терапия Принципиально новым методом, эффективным и направленным на уничтожение генетической причины наследственного заболевания, является генотерапия. Суть метода генотерапии – введение нормальных генов в дефектные соматические клетки. Концепция генной терапии заключатся в том, что наиболее радикальным способом борьбы с разного рода заболеваниями, вызываемыми изменениями генетического содержания клеток, должна быть обработка, направленная непосредственно на исправление или уничтожение самой генетической причины заболевания, а не её следствий. В связи с тем, что генная терапия представляет собой новое направление медицинской генетики, а болезни, которые пытаются лечить этим способом, очень разнообразны, создано множество оригинальных методических подходов к этой проблеме. В настоящее время исследования по генотерапии в основном направлены на коррекцию генетических дефектов соматических, а не половых клеток, что связано с чисто техническими проблемами, а также из соображений безопасности. Разработка таких мощных инструментов для генной модификации как CRISPR/Cas9 предоставили человечеству возможность в ближайшем будущем с помощью генной модификации успешно устранять причины наследственных заболеваний и повысить устойчивость организма к старческим заболеваниям. Существует несколько способов введения новой генетической информации в клетки млекопитающих. Это позволяет разрабатывать прямые методы лечения наследственных болезней — методы генотерапии. Используют два основных подхода, различающихся природой клеток-мишеней: · фетальная генотерапия, при которой чужеродную ДНК вводят в зиготу или эмбрион на ранней стадии развития; при этом ожидается, что введённый материал попадёт во все клетки реципиента (и даже в половые клетки, обеспечив тем самым передачу следующему поколению); · соматическая генотерапия, при которой генетический материал вводят только в соматические клетки, и он не передаётся половым клеткам. Риски Генотерапия может как обеспечить клиническую пользу, так и привести к расширению и злокачественной трансформации гемопоэтических клонов с переносными векторными вставками вблизи онкогенов, при использовании лентивирусных векторов, что увеличит риск лейкемии.
Генные болезни и их классификация Генные заболевания – неустранимое свойство всего живого. Большая часть генных болезней связана с генами, доставшимися нам от самых примитивных организмов. Миллиарды лет эволюции не сделали ни отдельные гены, ни выполняемые ими функции устойчивее к мутациям. Разные гены нашего организма возникли на разных этапах эволюции, причём большинство присутствовало ещё у самых-самых далёких предков «венца творения». Трудно поверить, но более половины наших генов в том или ином виде присутствовали ещё у одноклеточных организмов, причём большая часть этой половины возникла даже до появления у клеток ядер. А вот всё развитие млекопитающих добавило лишь около 10% от общего числа генов в нашем организме. Простая логика подсказывает, что от самых древних организмов человеку достались гены, ответственные за самые базовые клеточные процессы. Потому мутации в них должны приводить к дефектам, несовместимым с жизнью, и в категорию «врождённых», предполагающую это самое рождение, попасть не могут. Биологам развития давно известен ген Brachyury, продукт которого регулирует у животных развитие первичного эмбрионального рта (бластопора), среднего зародышевого листка (мезодермы), а у представителей типа хордовых — хорды. Долгое время считалось, что ни у кого, кроме многоклеточных животных, гена Brachyury нет. Но теперь известно, что этот ген есть у многих одноклеточных организмов и грибов; по-видимому, наличие генов, подобных Brachyury, является общим уникальным признаком эволюционной ветви заднежгутиковых (Opisthokonta), к которой относятся многоклеточные животные, грибы и их одноклеточные родственники. Причем функция этого гена очень стабильна: экспериментально показано, что продукт гена Brachyury, взятый от амебы Capsaspora, способен участвовать в развитии лягушки. Кроме того, эти гены миллиарды лет находились под влиянием процесса селекции и могли бы уж как-то «устаканиться» в виде, для которого мутации не так важны.
|
||||
Последнее изменение этой страницы: 2021-07-18; просмотров: 114; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 13.58.77.244 (0.012 с.) |