Изучение основных параметров оптронов 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Изучение основных параметров оптронов



Цель работы: Изучить основные параметры оптронов

Оптрон – это прибор, содержащий источник и приемник излучения, которые оптически и конструктивно связаны друг с другом. Источниками света могут служить лампы накаливания, неоновые лампы, электролюминесцентные панели, однако в большинстве случаев ими являются светодиоды. В качестве приемника излучения используют фоторезисторы, фотодиоды, фототранзисторы и фототиристоры. Средой оптического канала, связывающего излучатель и приемник, могут служить воздух, стекло, пластмасса и другие прозрачные вещества.

Рисунок 1 – Структурная схема оптрона

 

Элементарный оптрон, содержащий один источник и один приемник излучения, называют также оптопарой. Будучи объединенными в микросхему вместе с одним или несколькими согласующими или усиливающими устройствами, оптопары образуют оптоэлектронную интегральную микросхему.

В оптронах происходит двойное преобразование энергии (рис.1). Входной электрический сигнал (характеризующийся

силой тока I 1 или напряжением U1) преобразуется источником излучения 1 в световой (поток света Ф1), который передается затем по оптическому каналу 2 к фотоприемнику 3. Фотоприемник осуществляет обратное превращение светового сигнала в электрический I 2, U2. Среда оптического канала может быть управляемой (например обладать электрооптическими свойствами), что отражено и рис.1 введением в схему устройства управления 4, которое преобразует световой поток Ф1 в поток Ф2. Для согласования параметров оптронов с другими элементами электронных схем могут использоваться дополнительные входные и выходные устройства.

На рис.1 фотоприемник и излучатель электрически не соединены друг с другом. Такие оптроны с успехом могут использоваться в качестве элементов гальванической развязки. Однако введение электрической, а также оптической обратной связи между компонентами оптрона способно существенно расширить его возможности. В этом случае он может быть использован как прибор, позволяющий генерировать и усиливать электрические и оптические сигналы, как запоминающее устройство и т. д.

Помимо уже указанных достоинств оптрон характеризуется:

· высокой помехозащищенностью (поскольку его оптический канал невосприимчив к воздействию посторонних электромагнитных полей), а также однонаправленностью передачи оптического сигнала;

· широкой частотной полосой пропускания и, в частности, способностью преобразовывать и передавать не только импульсные сигналы, но и постоянную составляющую;

· совместимостью с другими изделиями полупроводниковой микроэлектроники.

 

Достижение высокого к. п. д. оптрона связано с получением высоких значений параметров, характеризующих преобразование и передачу энергии во всех его элементах. Желательно, чтобы параметры составных частей оптопары были согласованы по спектральным характеристикам, быстродействию, температурным свойствам, габаритам; при этом определенные требования предъявляются и на основе технологических соображений. В результате зачастую одно или несколько из вышеперечисленных требований приходится нарушать ради получения максимальных значений каких-либо определенных параметров.

Элементарный оптрон является четырехполюсным прибором, свойства которого определяются прежде всего тремя основными характеристиками — входной, передаточной и выходной. Входной является вольт-амперная характеристика излучателя, а выходной—соответствующая характеристика фотоприемника (при заданном токе на входе оптопары).

Передаточной характеристикой называют зависимость тока I 2 на выходе оптрона от тока I1 на его входе; в общем случае эта зависимость является нелинейной, что приводит к некоторому искажению формы передаваемого сигнала.

Типы оптронов

Резисторные оптопары

В качестве фотоприемников оптопар этого типа используют фоторезисторы на основе CdS и CdSe. При засветке фоторезисторов их сопротивление снижается от RT (темнового) до RCE (при освещении). Одним из основных параметров резисторных оптопар является отношение этих сопротивлений; значение RТ/RCB может достигать 104–107.

Фоторезисторы обладают, как правило, большой инерционностью. Именно поэтому в фоторезисторных оптопарах в качестве источников излучения широко применяют миниатюрные лампы накаливания, к достоинствам которых следует отнести хорошую воспроизводимость параметров, большой срок службы, малую стоимость.

Диодные оптопары

Оптопары этого типа изготовляют на основе кремниевых p-i-n -фотодиодов и арсенидгаллиевых светодиодов.

Диодные оптопары могут работать в вентильном режиме, когда оптрон выступает в качестве источника питания. Оптроны, предназначенные для этих целей, имеют повышенное (3–4%) значение kI, однако к. п. д. таких приборов также составляет лишь около одного процента.

Среди выпускаемых диодных оптопар можно выделить, наконец, группу приборов, оптический канал которых выполнен в виде световода длиной 30—100мм. Эти приборы характеризуются высокой электрической прочностью (Uиз = 20≈50 кВ) и малой проходной емкостью пр= 0,01 пФ).

Транзисторные оптопары

К этому классу приборов относятся диодно-транзисторные (приемником излучения является фотодиод, один из выводов которого соединен с базой транзистора, введенного в состав оптрона) и транзисторные (приемником излучения служит фототранзистор) оптопары, а также оптроны с составным фототранзистором. Их параметры существенно отличаются друг от друга. Так, оптопары с составным фототранзистором обладают наилучшими передаточными характеристиками по току (в результате внутреннего усиления сигнала kI может достигать 1000%), зато диодно-транзисторные имеют большее быстродействие (t п = 2÷4 мкс). При этом оказывается, что для оптопар перечисленных типов отношение остается постоянным в широком интервале значений входных токов.

Тиристорные оптопары

Тиристорные оптопары используют в качестве ключей для коммутации сильнотоковых и высоковольтных цепей как радиоэлектронного (U2 = 50÷600 В, I2 = 0,1-10 А), так и электротехнического (U2= 100÷300 В, I2 = 6,3÷320 А) назначения. Важным достоинством этих приборов является то, что, управляя значительными мощностями в нагрузке, они тем не менее по входу совместимы с интегральными микросхемами.

В зависимости от гарантируемых значений коммутируемых напряжений и токов, а также от времени переключения тиристорные оптопары подразделяются на большое число групп. В целом типичные значения t1 составляют 10—30 мс, t2 = 30÷250 мкс.

 

 


Практическая работа № 8



Поделиться:


Последнее изменение этой страницы: 2021-06-14; просмотров: 129; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.222.115.120 (0.006 с.)