Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Готфрид Лейбниц ( 1646 — 1716 гг.)↑ ⇐ ПредыдущаяСтр 2 из 2 Содержание книги
Поиск на нашем сайте
Этот немецкий учёный жил и творил в одно время с Ньютоном, и, независимо от последнего, создал основы математического анализа, опирающиеся на понятия бесконечно малых величин. Лейбниц представлял себе матанализ алгебраически, а не кинематически, как это делал Ньютон. Леонард Эйлер (1707 — 1783 гг.) В специальной литературе нередко можно встретить утверждение, что этот швейцарец является самым выдающимся математиком всех времён. Между прочим, он много лет прожил в России, в Петербурге, и даже многие свои работы написал на русском языке, который выучил в совершенстве всего за год! Трудно найти отрасль математики, в которой Эйлер не написал бы хоть одну важную работу. Он впервые создал «математический оркестр», увязав множество доселе разрозненных дисциплин в единую систему математики. Язык современной математики нельзя представить без таких понятий, как «углы Эйлера» или «формула Эйлера». Некоторые математические вопросы до сегодняшнего дня преподают студентам «по Эйлеру». Рене Декарт (1596 — 1650 гг.) Когда мы говорили, что Ньютон и Лейбниц разработали основы математического анализа, справедливо было бы вспомнить, что их изыскания базировались не на пустом месте. Начальные идеи были известны ещё до работ этих учёных, а разработал их почти легендарный француз, Рене Декарт. Современные математики считают его зачинателем аналитической геометрии. Он впервые ввёл понятия функции и переменной величины. С одним из достижений Декарта сталкивался практически каждый человек. Это система координат, известные всем шкалы «икс» и «игрек». Помимо этого, именно Рене ввёл в математику понятия гиперболы и параболы, овала и листа.
Жозеф Луи Лагранж (1736 — 1813 гг.) В XVIII веке, наряду с Эйлером, этот француз считался лучшим европейским математиком. Был особенно силён в области математического синтеза. Разработал и доказал несколько важнейших теорем, в том числе «формулу конечных приращений». Пьер-Симон Лаплас (1749 — 1827 гг.) Много работал как астроном, но в математике известен как один из тех, кто разрабатывал теорию вероятностей. Специалистам известны уравнения его имени и преобразование Лапласа. Ввёл важное понятие математического ожидания. Иоганн Гаусс (1777 — 1855 гг.) Мы говорили уже об отце математики — Пифагоре. А этого немца нередко называют королём математики. Гаусс написал ряд важнейших работ во многих отраслях этой науки, которые до сих пор остаются базовыми, классическими. Много работал в математическом анализе, в неэвклидовой геометрии, открыл так называемые «гауссовые числа», разработал модель комплексных чисел. Российские математики В заключение хотелось бы подчеркнуть, что свой вклад, причём значительный, внесли в европейскую математическую науку и российские учёные. Вспомним хотя бы о некоторых их них.
|
||||
Последнее изменение этой страницы: 2021-06-14; просмотров: 111; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.226.17.251 (0.008 с.) |