Дальнейшая судьба энергоблока 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Дальнейшая судьба энергоблока



Дезактивация помещений вспомогательного реакторного здания.

Три Майл Айленд

Расположение АЭС и мест захоронения топлива и радиоактивных отходов, образовавшихся в результате аварии

В результате аварии ядерное топливо было расплавлено, а помещения и оборудование станции значительно загрязнены радиоактивными веществами. Для приведения станции в безопасное стабильное состояние было необходимо:

· дезактивировать помещения до разумно достижимого уровня;

· удалить из атмосферы герметичной оболочки криптон-85;

· очистить накопившиеся объёмы радиоактивной воды;

· выгрузить из реактора и захоронить ядерное топливо.

После естественного распада короткоживущих изотопов ксенона и йода единственным радиоактивным газом, присутствовавшим в значительных количествах (около 46 000 Ки) под защитной оболочкой, оставался криптон-85 (период полураспада составляет 10 лет). Исходя из инертности криптона-85, который не задействован в биологических цепочках, и отсутствия достаточно эффективных методов по его улавливанию, было решено рассеять его в атмосфере, что было выполнено в течение июня 1980 года путем вентиляции герметичной оболочки.

Первое время после аварии мощность дозы излучения во вспомогательных помещениях станции составляла от 50 мР/ч до 5 Р/ч, а в герметичной оболочке от 225 мР/ч до 45 Р/ч. Во многие помещения нельзя было входить без респираторов, а обходы гермооболочки требовали наличия автономной системы дыхания и нескольких слоёв защитной одежды. Основной целью дезактивации было снижение уровня воздействия вредных радиационных факторов до разумно достижимых значений, позволявших безопасно вести работы по удалению топлива из реактора. Большая часть работ выполнялась традиционными методами — путем смывки и удаления радиоактивных веществ с поверхностей. Однако поверхности помещений, подвергшиеся загрязнению высокоактивным теплоносителем, пришлось дезактивировать путем скалывания слоя бетона и вакуумного удаления образовавшейся пыли. В некоторых помещениях, загрязнение которых не позволяло работать в них людям, использовалась дистанционно управляемая техника — роботы, выполнявшие аналогичную работу.

Одним из уроков проведённой работы стал провал дезактивации в герметичной оболочке. Несмотря на все усилия, к 1982 году мощность излучения снизилась лишь на 22 % по отношению к 1980 году, причём 17 % были обусловлены естественным распадом изотопов. В больших объёмах гермооболочки практически невозможно было контролировать повторное загрязнение ранее очищенных поверхностей из-за воздушного переноса радиоактивных веществ, поднятых при работах на новых участках. В итоге была принята стратегия уменьшения доз персонала за счет экранирования наиболее загрязнённых объектов и лучшего планирования маршрутов следования и тщательной организации работ.

Так как активная зона реактора была разрушена, то невозможно было воспользоваться штатными средствами извлечения топлива. Над реактором была сооружена специальная поворотная платформа, на которой были установлены манипуляторы, позволявшие выполнять различные операции по удалению материалов активной зоны. Среди них были как простые захваты, так и более сложные механизмы для резки, сверления или гидравлического сбора фрагментов топлива. Работы по извлечению материалов активной зоны начались 30 октября 1985 года, после того как была снята крышка реактора.

Одной из неожиданностей стала высокая и быстро растущая мутность воды первого контура (к февралю 1986 года видимость не превышала 5 сантиметров). Это явление было обусловлено быстрым ростом количества микроорганизмов после снятия крышки реактора и соответственно аэрации воды и наличия яркого освещения. Другим источником загрязнения была коллоидная суспензия, образованная в основном гидроксидами металлов. Эта суспензия содержала настолько мелкие частицы, что они не могли быть эффективно очищены существующими фильтрами. Только к январю 1987 года благодаря применению перекиси водорода для уничтожения микроорганизмов и использованию коагулянтов для борьбы с суспензией удалось снизить мутность воды ниже 1 ЕМ (единица мутности).

Первое время работа заключалась в сборе и удалении обломков с верхней части активной зоны. Так продолжалось до апреля 1986 года, когда верхний завал был разобран и под ним обнаружилась твердая корка застывшего расплава. Дальнейшая работа проводилась с помощью буровой установки, которая позволила разрушить топливную массу на подходящие для транспортировки обломки. К ноябрю 1987 года практически все остатки топливных кассет были удалены. Однако значительное количество расплава и обломков скопилось под нижними распределительными решетками внутрикорпусных устройств реактора. Было решено срезать все решетки до самого дна корпуса реактора. Работы проводились под 12-метровой толщей воды при помощи плазменной резки. Официально удаление топлива со станции было завершено в 1990 году. Все извлечённое топливо было упаковано в специальные контейнеры и отправлено на захоронение в национальную лабораторию Айдахо.

При аварии и за время её ликвидации образовались большие объёмы (до 8 700 м³) радиоактивной воды. Эта вода была очищена от радионуклидов с помощью ионообменных и цеолитовых фильтров, после чего соответствовала всем нормативам и могла быть сброшена в реку Саскуэханна. Однако на это был наложен запрет из-за протестов населения городов, находящихся ниже по течению реки. В качестве альтернативного решения была сооружена установка по двухступенчатому выпариванию воды, чистый пар (включая 1 020 Ки или 37 740 ГБк трития, который практически невозможно отделить) рассеивался в атмосфере, а образовавшийся остаток, содержащий 99,9 % примесей, растворённых в воде, подвергся отверждению и был захоронен как низко активные отходы.

Твердые радиоактивные отходы, образовавшиеся при ликвидации аварии, такие как, например, фильтрующие материалы, вобравшие в себя все радиоактивные загрязнения из очищаемой воды, были захоронены, в основном, в хранилищах U.S. Ecology (Ричленд, штат Вашингтон) и EnergySolutions (Барнуэлл, штат Южная Каролина).

Общая стоимость всего комплекса работ составила около одного миллиарда долларов США[151]. Эта сумма была набрана из нескольких источников: из вклада владельца станции — холдинга General Public Utilites (367 млн $), страховых выплат (306 млн $), вклада других компаний атомной отрасли (171 млн $), финансов федерального правительства (76 млн $) и налогов штатов Нью Джерси и Пенсильвания (42 млн $).

Начиная с 1993 года энергоблок № 2 АЭС «Три-Майл-Айленд» находится в так называемом состоянии «сохранение под наблюдением». Это означает, что:

· ядерное топливо удалено из объёма реакторной установки и вывезено за пределы площадки АЭС;

· дезактивация выполнена в разумно достижимом объёме, дальнейшая дезактивация будет вести лишь к неоправданно высоким затратам (по сравнению с получаемыми результатами);

· достигнутый уровень стабильности и безопасности энергоблока исключает риски для здоровья населения.

В помещениях станции до сих пор имеется повышенный радиационный фон, обусловленный в основном остатками загрязнений в виде долгоживущих изотопов стронция-90 и цезия-137, оставшихся на поверхностях оборудования и строительных конструкций. Также незначительное количество частиц топлива осталось в труднодоступных для удаления участках оборудования и в толще бетона, куда они проникли с водой первого контура.

Окончательная ликвидация энергоблока запланирована совместно с первым блоком АЭС после завершения эксплуатации последнего (лицензия на его эксплуатацию в 2009 году была продлена до 19 апреля 2034 года).

Примечания

1. Согласно ГОСТ 24856-2014 «Арматура трубопроводная. Термины и определения», затвор — совокупность подвижных и неподвижных элементов арматуры, образующих проходное сечение и соединение, препятствующее протеканию рабочей среды

2. Для защиты реакторной установки Babcock&Wilcox от превышения давления использовались два пружинных предохранительных клапана. Главным их недостатком являлось то, что после срабатывания клапан мог закрыться недостаточно плотно, а это требовало остановки и длительного расхолаживания реактора ради мелкого ремонта. Из-за высокой чувствительности прямоточных парогенераторов к изменениям в работе второго контура, предохранительные клапаны могли сработать и при сравнительно малозначительных нарушениях в работе станции. Чтобы уменьшить простои энергоблока и недовыработку электроэнергии, дополнительно устанавливался небольшой электромагнитный клапан, при скачках давления, подобных рассматриваемому, он срабатывал еще до начала открытия предохранительных клапанов, тем самым уменьшая частоту их использования.



Поделиться:


Последнее изменение этой страницы: 2021-06-14; просмотров: 33; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.144.154.208 (0.005 с.)