Прогнозирование и оценка обстановки ЧС техногенного характера 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Прогнозирование и оценка обстановки ЧС техногенного характера



При заблаговременном прогнозировании обстановки в чрезвычайных ситуациях техногенного характера, как правило, принимают следующие допущения

— рассматривают негативные события (источники чрезвычайных ситуаций), наносящие наибольший ущерб;

— масса (объем) выброса (сброса) вещества (энергии) при техногенной аварии соответствует максимально возможной величине или объему наибольшей емкости;

— метеоусловия (класс устойчивости атмосферы, скорость и направление ветра, температура воздуха, влажность и т. п.) принимаются наиболее благоприятными (инверсия, скорость ветра 1 м/с, температура 20°С) для распространения пыле-паро-газово-го облака (радиоактивного, токсического, взрывоопасного);

— распределение населения в домах, на улице, в транспорте, на производстве принимается соответствующим среднестатистическому, с равномерной плотностью населения (персонала) в пределах населенного пункта (объекта экономики).

Рассмотрим методы прогнозирования последствий некоторых техногенных аварий.

Прогнозирование и оценка обстановки при авариях, связанных со взрывами.

Прогнозирование обстановки при взрывах заключается в определении размеров зон возможных поражений, степени поражения людей и разрушения объектов. Для этого обычно используют один из двух методов прогнозирования последствий взрывов: детерминированный (упрощенный) и вероятностный.

При детерминированном способе прогнозирования поражающий эффект ударной волны определяется избыточным давлением во фронте ударной волны Рф (кПа), в зависимости от величины которого находятся степени поражения людей:

Рф, кПа Менее 10 10-40 40-60 60-100 Более 100                       

Степень Безопасное Легкая Средняя (крово- Тяжелая Смертельное поражения людей избыточное давление (ушибы.,потеря слуха) течения, вывихи, (контузии) поражение сотрясения мозга) и степени разрушения зданий (табл. 14)

Избыточное давление во фронте ударной волны Рф (кПа), при котором происходит разрушение объектов

Объект

Разрушение

полное сильное среднее слабое
Здания жилые:        
кирпичные многоэтажные 30…40 20…30 10…20 8…10
кирпичные малоэтажные 35…45 25…35 15…25 8…15
деревянные 20…30 12…20 8…12 6…8
Здания промышленные:        
с тяжелым металлическим или ж/б каркасом 60…100 40…60 20…40 10…20
с легким металлическим каркасом или бескаркасные 80…120 50…80 20…50 10…20
Промышленные объекты:        
ТЭС 25…40 20…25 15…220 10…15
котельные 35…45 25…35 15…25 10…15
трубопроводы наземные 20 50 130 -
трубопроводы на эстакаде 20…30 30…40 40…50 -
трансформаторные подстанции 100 40…60 20…40 10…20
ЛЭП 120…200 80…120 50…70 20…40
водонапорные башни 70 60…70 40…60 20…40
станочное оборудование 80…100 60…80 40…60 25…40
кузнечно-прессовое оборудование 200…250 150…200 100…150 50…100
Резервуары, трубопроводы:        
стальные наземные 90 80 55 35
газгольдеры и емкости ГСМ и химических веществ 40 35 25 20
частично заглубленные для нефтепродуктов 100 75 40 20
подземные 200 150 75 40
автозаправочные станции - 40…60 30…60 20…30
перекачивающие и компрессорные станции 45…50 35…45 25…45 15…25
Резервуарные парки (заполненные) 90…100 70…90 50…80 20…40
Транспорт:        
металлические и ж/б мосты 250…300 200…250 150…200 100…150
ж/д пути 400 250 175 125
Тепловозы с массой до 50 т 90 70 50 40
цистерны 80 70 50 30
вагоны цельнометаллические 150 90 60 30
вагоны товарные деревянные 40 35 30 15
автомашины грузовые 70 50 35 10

Таблица 14

Примечания: слабые разрушения — повреждение или разрушение крыш, оконных и дверных проемов. Ущерб—10—15% от стоимости здания; средние разрушения — разрушения крыш, окон, перегородок, чердачных перекрытий, верхних этажей. Ущерб — 30—40%; сильные разрушения — разрушение несущих конструкций и перекрытий. Ущерб — 50%. Ремонт нецелесообразен; полное разрушение — обрушение зданий.

При вероятном способе прогнозирования поражающее действие ударной волны определяется как избыточным давление на фронте ударной волны Рф (кПа), так и импульсом фазы сжав ударной волны I+ (кПа * с).

Степень поражения (разрушения) Рпор (%) (см. табл. П. 1) опре­деляется в зависимости от пробит-функции Рr, являющейся функ­цией Рф (кПа) и I+ (кПа * с) (табл. 15).

Выражение пробит-функций для разных степеней поражения (разрушения)

 

Степень поражения (разрушения) Пробит-функция

Поражение человека

1. Разрыв барабанных перепонок Рr = -12,6 + 1,524 ln Рф
2. Контузия Рr = 5 – 5,74 ln{4,2/(1 + Pф/Ро + 1,3/[I+ /()]}, где m – масса тела, кг
3. Летальный исход Рr = 5 – 2.44 ln [7,38/ Pф + 1,9*103 /( РфI+)]

Разрушение зданий

1. Слабые разрушения Pr = 5 – 0,26 ln [(4,6/ Pa)3,9 + (0,11/I+)5,0 ]
2. Средние разрушения Pr = 5 – 0,26 ln [(17,5/ Pa)8. 4 + (0,29/I+)9,3 ]
3. Сильные разрушения Pr = 5 – 0,22 ln [(40/ Pa)7,4 + (0,26/I+)11,3 ]

Таблица 15

При полном разрушении зданий под действием взрыва образу­ются завалы, форма и размеры которых зависят от размеров здания и особенностей взрыва. При взрыве внутри здания обломки разле­таются во все стороны равномерно, а при взрыве вне здания — смещаются в направлении распространения ударной волны.

При сильном разрушении зданий можно принять, что объем завалов составляет примерно 50% объема завалов при полном раз­рушении здания.

При приближенных оценках размеры завалов, образующихся при взрыве внутри здания размером ABE, можно определить по формулам:

длина завала А (м)

ширина завала Взав (м)

где L – дальность разлета обломков, принимается равной половине высоты здания (L =H/2).

При внешнем взрыве размеры завала определяют по формулам

Для определения высоты завала h (м) используется формула

где — удельный объем завала на 100 м3 строительного объема зда­ния (табл. 16);

— константа, равная k = 2 — для взрыва вне зда­ния и k =2,5 — для взрыва внутри здания.

Объемно- массовые характеристики завалов

Тип здания Пустотность , м3 /100 м3 Удельный объем , м3 / 100м3 Объёмный вес , т / м3

Производственные здания

Одноэтажное легкого типа 40 14 1,5
Одноэтажное среднего типа 50 16 1,2
Одноэтажное тяжелого типа 60 20 1,0
Многоэтажное 40 21 1,5
Смешанного типа 45 22 1,4

Жилые здания бескаркасные

Кирпичное 30 36 1,2
Мелкоблочное 30 36 1,2
Крупноблочное 30 36 1,2
Крупнопанельное 40 42 1,1

Жилые здания каркасные

Со стенами из навесных панелей 40 42 1,1
Со стенами из каменных материалов 40 42 1,1

Таблица 16

Примечания: 1. Пустотность завала () — объем пустот на 100 м3 завала, м3. 2. Объемный вес завала () — вес 1 м3 завала, т/м3

Для ориентировочного определения безвозвратных потерь Nбезв (чел) населения (персонала) вне зданий и убежищ можно ис­пользовать формулу

,

где Р – плотность населения (персонала), тыс. чел. /км2; Gтнт - тротиловый эквивалент, т.

Санитарные потери Nсан (чел.) принимаются равными

а общие потери Nобщ (чел.)

Для ориентировочного определении потерь людей, находя­щихся в зданиях, в зависимости от степени их разрушения можно использовать следующие формулы:

где Ni— количество персонала в i-м здании, чел.; n — число зда­ний (сооружений) на объекте; — общие потери при разруше­нии i-го здания; К1 i, K2 i — коэффициенты для нахождения потерь в i-м здании, определяемые по табл. 17.

Значения коэффициентов К1, К2

Степень разрушения зданий К1 К2
Слабая 0,08 0,03
Средняя 0,12 0,09
Сильная 0,8 0,25
Полная 1 0,3

Таблица 17

Взрыв конденсированных ВВ.

Для определения зависимости избыточного давления на фронте ударной волны Рф (кПа) от рас­стояния R (м) до эпицентра взрыва конденсированного взрывча­того вещества наиболее часто используют формулу М.А. Садов­ского для наземного взрыва при условии 1 R 100:

Величину импульса фазы сжатия I+ (кПа * с) на расстоянии R (м) от эпицентра взрыва для ориентировочных расчетов можно определить по приближенной формуле

Здесь GТНТ — тротиловый эквивалент, равный массе тринитро­толуола (тротила), при взрыве которой выделяется такое же коли­чество энергии, как и при взрыве рассматриваемого взрывчатого вещества G, кг. Величина GТНТ (кг) определяется по формуле

Где и - энергии взрывов, соответственно, рассматриваемого взрывчатого вещества и тротила, кДж/кг, приведенные в табл. 18.

Взрывчатое вещество Взрывчатое вещество
Индивидуальные: Смеси:    
тротил (ТНТ) 4520

Амматол 80/20 (80% нитрата + 20% ТНТ)

2650

гексоген 5360
октоген 5860

60% нитроглицериновый динамит

2710

нитроглицирин 6700
тетрил 4500 торпекс (42%гексогена + 40% ТНТ + 18% Al) 7540
гремучая ртуть 1790 Пластическое ВВ (90% нитроглицерина + 8% нитроцеллюлозы + 1% щелочи + 0,2 % H2 O) 4520

Таблица 18. Энергии взрыва (кДж)/кг конденсированных взрывчатых веществ.


ЗАКЛЮЧЕНИЕ

Исходя из содержания дипломной работы можно сделать следующие выводы:

Одним из важных условий обеспечения безопасности людей в трудовом процессе является эффективное обеспечение безопасности на объектах в случае создавшейся чрезвычайной ситуации природного характера.

В первой главе анализ показал, что самой опасной для жизни людей ЧС является засуха. Именно она стала причиной примерно 49% погибших от природных катастроф. По стaтистическим данным выявлено в сравнительной характеристики по РФ то, что в период с 2002 по 2008 год, в 2008 году было больше ЧС, чем в остальные представленные года. А в период с 2010 по 2012 год, анализ показал, что в 2010 году больше произошло ЧС.

Во второй главе, «Прогнозирование и оценка обстановки при чрезвычайных ситуациях техногенного характера» и «Прогнозирование ЧС природного характера на примере наводнений и оползней», можно сделать вывод, что самой опасной является ситуация техногенного характера.

При сильном разрушении зданий можно принять, что объем завалов составляет примерно 50% объема завалов при полном разрушении здания.

Основными поражающими факторами, возникающими при дефлаграционном (взрывном) горении и детонационном взрыве ТВС, являются:

­   ударная воздушная волна;

­   тепловое излучение из зоны взрывного горения (зоны детонационного взрыва);

­   разлет осколков (фрагментов конструкций), если взрыв происходит в резервуаре или ином замкнутом объеме.


СПИСОК ЛИТЕРАТУРЫ.

1. Вахтин А.К. Меры безопасности при ликвидации последствий стихийных бедствий и производственных аварий. - М.: Энергоатомиздат, 1984. - 288с.

2. Гринин А.С., Новиков В.Н. Экологическая безопасность. Защита территории и населения при чрезвычайных ситуациях: Учебное пособие. - М.: ФАИР - ПРЕСС, 200. - 336с.

3.. Безопасность жизнедеятельности_Гриценко В.С_Уч. пос_МЭСИ, 2004, -244с.

4. Русак О.Н., Малаян К.Р., Занько Н.Г. Безопасность жизнедеятельности. СПб.: Лань, 2001. - 448с.

5. ГОСТ Р 22.1.07 - 99. Мониторинг и прогнозирование опасных метеорологических явлений и процессов. Общие требования. - М.: Госстандарт, 1999. - 11с.

6. Чрезвычайные ситуации и защита от них.

Сост. А.Бондаренко. Москва, 1998 г.

7. Мешков Н. Основы безопасности жизни. 1998 г.

8,Учебник «Гражданская оборона» - В.Г.Атаманюк, Л.Г.Ширшев, Н.И.Акимов.

9.«Безопасность жизнедеятельности» - С.В. Белов, В.А. Девисилов, А.Ф. Козьяков, Л.Л.Морозова, В.С. Спиридонов, В.П.Сивков, Д.М. Якубович. Высшая школа, М. 2000.

10. Болов, В.А. Прогнозирование чрезвычайных ситуаций и стратегическое планирование будущего [Текст] / В.А. Болов // Основы Безопасности Жизнедеятельности. - 2010. - №2. - С. 18-19. 11. Демиденко, Е.П. Защита объектов народного хозяйства от орудия массового поражения [Текст]: справочник / Г.П. Демиденко, Е.П. Кузьменко, П.П. Орлов. - 2 - е изд., перераб. и доп. - К.: Высшая шк., 1989. - 287 с.

12. Мастрюков, Б.С. Безопасность в чрезвычайных ситуациях [Текст]: учеб. для студ. высш. уч. Заведений / Б.С. Мастрюков. - 2 - е изд., стер. - М.: издательский центр «Академия», 2004. - 336 с.. 13. МЧС России [Электронный ресурс] / Статистика ЧС в Российской Федерации 2005-2010. - Режим доступа: http://www.mchs.gov.ru, свободный. - Яз. Рус., Дата обращения: 12.11.2012 г. 

14. Общие правила взрывобезопасности и для взрывоопасных химических, нефтехимических и нефтеперерабатывающих производств [Текст]: ПБ 09 - 540 - 03: утв. Постановлением Госгортехнадзора России от 05.05.03 №29; зарегистрированно М-вом юстиции Рос. Федерации 15.05.03, №4537. - Спб.: ДЕАН, 2003. - 60 с.

 15. РД 03-357-00* Методические рекомендации по составлению декларации промышленной безопасности опасного производственного объекта [Текст]: взамен РД 03-315-99: от 26.04.00 №23. - Госгортехнадзор России, - 2000. - 52 с.

16. Российская Федерация. Законы. О промышленной безопасности опасных производственных объектов [Текст]: федер. закон №116: [принят Гос. Думой 21 июля 1997 г.]. - [с изм. и доп.]. - М: 2000. - 20 с.

17. Российская Федерация. Законы. О защите населения и территорий от чрезвычайных ситуаций природного и техногенного характера [Текст]: федер. закон: [c изм. и доп.]. - [11- е изд.]. - М.: Ось - 89, 1994. - 22 с.

18. Русак, О.Н. Безопасность жизнедеятельности. [Текст] / О.Н. Русак, К.Р. Малаян, Н.Г. Занько. - СПб.: Издательство Лань, 2002. - 448 с.: ил.

 

 



Поделиться:


Последнее изменение этой страницы: 2021-07-19; просмотров: 67; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.118.120.109 (0.042 с.)