Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Фотосинтез. Основные закономерности световой и темновой фаз. Значение фотосинтеза.

Поиск

 

Все живые существа нуждаются в пище и питательных веществах. Питаясь, они используют энергию, запасенную, прежде всего, в органических соединениях – белках, жирах, углеводах. Гетеротрофные организмы используют пищу растительного и животного происхождения, уже содержащую органические соединения. Растения же создают органические вещества в процессе фотосинтеза. Исследования в области фотосинтеза начались в 1630 г. экспериментами голландца ван Гельмонта. Он доказал, что растения получают органические вещества не из почвы, а создают их самостоятельно. Джозеф Пристли в 1771 г. доказал «исправление» воздуха растениями. Помещенные под стеклянный колпак они поглощали углекислый газ, выделяемый тлеющей лучиной. Исследования продолжались, и в настоящее время установлено, что фотосинтез – это процесс образования органических соединений из диоксида углерода (СО2) и воды с использованием энергии света и проходящий в хлоропластах зеленых растений и зеленых пигментах некоторых фотосинтезирующих бактерий.

Хлоропласты и складки цитоплазматической мембраны прокариот содержат зеленый пигмент – хлорофилл. Молекула хлорофилла способна возбуждаться под действием солнечного света и отдавать свои электроны и перемещать их на более высокие энергетические уровни. Этот процесс можно сравнить с подброшенным вверх мячом. Поднимаясь, мяч запасается потенциальной энергией; падая, он теряет ее. Электроны не падают обратно, а подхватываются переносчиками электронов (НАДФ+ – никотинамиддифосфат). При этом энергия, накопленная ими ранее, частично расходуется на образование АТФ. Продолжая сравнение с подброшенным мячом, можно сказать, что мяч, падая, нагревает окружающее пространство, а часть энергии падающих электронов запасается в виде АТФ. Процесс фотосинтеза подразделяется на реакции, вызываемые светом, и реакции, связанные с фиксацией углерода. Их называют световой и темновой фазами.

 

«Световая фаза» – это этап, на котором энергия света, поглощенная хлорофиллом, преобразуется в электрохимическую энергию в цепи переноса электронов. Осуществляется на свету, в мембранах гран при участии белков – переносчиков и АТФ-синтетазы.

Реакции, вызываемые светом, происходят на фотосинтетических мембранах гран хлоропластов:

1) возбуждение электронов хлорофилла квантами света и их переход на более высокий энергетический уровень;

2) восстановление акцепторов электронов – НАДФ+ до НАДФ Н

2Н+ + 4е- + НАДФ+ → НАДФ Н;

3) фотолиз воды, происходящий при участии квантов света: 2Н2О → 4Н+ + 4е- + О2.

Данный процесс происходит внутри тилакоидов – складках внутренней мембраны хлоропластов. Из тилакоидов формируются граны – стопки мембран.

Результатами световых реакций являются:

· фотолиз воды с образованием свободного кислорода,

· синтез АТФ,

· восстановление НАДФ+ до НАДФ Н.

Таким образом свет нужен только для синтеза АТФ и НАДФ-Н.

 

«Темновая фаза» – Эта фаза протекает в строме хлоропласта. Для ее реакций не нужна энергия света, поэтому они происходят не только на свету, но и в темноте. Реакции темновой фазы представляют собой цепочку последовательных преобразований углекислого газа (поступает из воздуха), приводящую к образованию глюкозы и других органических веществ с использованием энергии АТФ и НАДФ Н.

Первая реакция в этой цепочке — фиксация углекислого газа; акцептором углекислого газа является пятиуглеродный сахар рибулозобифосфат (РиБФ); катализирует реакцию фермент рибулозобифосфат-карбоксилаза (РиБФ-карбоксилаза). В результате карбоксилирования рибулозобисфосфата образуется неустойчивое шестиуглеродное соединение, которое сразу же распадается на две молекулы фосфоглицериновой кислоты (ФГК). Затем происходит цикл реакций, в которых через ряд промежуточных продуктов фосфоглицериновая кислота преобразуется в глюкозу. В этих реакциях используются энергии АТФ и НАДФ·Н2, образованных в световую фазу; цикл этих реакций получил название «цикл Кальвина»:

6СО2 + 24Н+ + АТФ → С6Н12О6 + 6Н2О.

Результатом темновых реакций являются превращения углекислого газа в глюкозу, а затем в крахмал. Помимо молекул глюкозы в строме происходит образование, аминокислот, нуклеотидов, спиртов.

 

Суммарное уравнение фотосинтеза — 6СО2 + 6Н2О => С6Н12О6 + 6О2

Кроме глюкозы, в процессе фотосинтеза образуются другие мономеры сложных органических соединений — аминокислоты, глицерин и жирные кислоты, нуклеотиды.

Значение фотосинтеза.

В процессе фотосинтеза образуется свободный кислород, который необходим для дыхания организмов:

· кислородом образован защитный озоновый экран, предохраняющий организмы от вредного воздействия ультрафиолетового излучения;

· фотосинтез обеспечивает производство исходных органических веществ, а следовательно, пищу для всех живых существ;

· фотосинтез способствует снижению концентрации диоксида углерода в атмосфере.

 

 Биосинтез белка. Трансляция. Регуляция трансляции.

 

Биосинтез белка – сложный многостадийный процесс синтеза полипептидной цепи из аминокислотных остатков, происходящий на рибосомах клеток живых организмов с участием молекул мРНК и тРНК. Именно туда поступает информационная РНК из ядра клетки.

Биосинтез белка можно разделить на стадии транскрипции, процессинга и трансляции.

 

Транскрипция – это процесс снятия информации с молекулы ДНК, синтезируемой на ней молекулой и-РНК. Информационная РНК состоит из одной цепи и синтезируется на ДНК в соответствии с правилом комплементарности. Как и в любой другой биохимической реакции в этом синтезе участвует фермент. Он активирует начало и конец синтеза молекулы и-РНК. Готовая молекула и-РНК выходит в цитоплазму на рибосомы, где происходит синтез полипептидных цепей. Процесс перевода информации, содержащейся в последовательности нуклеотидов и-РНК, в последовательность аминокислот в полипептиде называется трансляцией.

Аминокислоты доставляются к рибосомам транспортными РНК. Эти РНК имеют форму клеверного листа. На конце молекулы есть площадка для прикрепления аминокислоты, а на вершине – триплет нуклеотидов, комплементарный определенному триплету – кодону на и-РНК. Этот триплет называется антикодоном. Ведь он расшифровывает код и-РНК. В клетке т-РНК всегда столько же, сколько кодонов, шифрующих аминокислоты.

Рибосома движется вдоль и-РНК, смещаясь при подходе новой аминокислоты на три нуклеотида, освобождая их для нового антикодона. Аминокислоты, доставленные на рибосомы, ориентированы по отношению друг к другу так, что карбоксильная группа одной аминокислоты оказывается рядом с аминогруппой другой аминокислоты. В результате между ними образуется пептидная связь. Постепенно формируется молекула полипептида.

Синтез белка продолжается до тех пор, пока на рибосоме не окажется один из трех стоп-кодонов – УАА, УАГ, или УГА.

После этого полипептид покидает рибосому и направляется в цитоплазму. На одной молекуле и-РНК находятся несколько рибосом, образующих полисому. Именно на полисомах и происходит одновременный синтез нескольких одинаковых полипептидных цепей.

 

Каждый этап биосинтеза катализируется соответствующим ферментом и обеспечивается энергией АТФ.

Биосинтез происходит в клетках с огромной скоростью. В организме высших животных в одну минуту образуется до 60 тыс. пептидных связей.

 

 

16. Понятие об онтогенезе. Общие закономерности эмбрионального развития. Бластуляция. Гаструляция. Нейруляция.

 

Онтогенез – это индивидуальное развитие организма от момента образования зиготы до смерти. В ходе онтогенеза проявляется закономерная смена фенотипов, характерных для данного вида. Различают непрямой и прямой онтогенезы. Непрямое развитие (метаморфоз) встречается у плоских червей, моллюсков, насекомых, рыб, земноводных. Их зародыши проходят в своем развитии несколько стадий, в том числе личиночную. Прямое развитие проходит в неличиночной или внутриутробной форме. К нему относятся все формы яйцеживорождения, развитие зародышей пресмыкающихся, птиц и яйцекладущих млекопитающих, а также развитие некоторых беспозвоночных (прямокрылых, паукообразных и др.). Внутриутробное развитие происходит у млекопитающих, в том числе и у человека.

В онтогенезе выделяют два периода – эмбриональный – от образования зиготы до выхода из яйцевых оболочек и постэмбриональный – с момента рождения до смерти.

Эмбриональный период многоклеточного организма состоит из следующих стадий:

зиготы;

дробления;

бластулы – стадии развития многоклеточного зародыша после дробления зиготы. Зигота в процессе бластуляции не увеличивается в размерах, увеличивается число клеток, из которых она состоит; стадии образования однослойного зародыша, покрытого бластодермой, и формирования первичной полости тела – бластоцели;

гаструлы – стадии образования зародышевых листков – эктодермы, энтодермы (у двухслойных кишечнополостных и губок) и мезодермы (у трехслойных у остальных многоклеточных животных). У кишечнополостных животных на этой стадии формируются специализированные клетки, такие как стрекательные, половые, кожно-мускульные и т. д. Процесс образования гаструлы называется гаструляцией.

Нейрулы – стадии закладки отдельных органов.

Гисто– и органогенеза – стадии появления специфических функциональных, морфологических и биохимических различий между отдельными клетками и частями развивающегося зародыша. У Позвоночных животных в органогенезе можно выделить:

а) нейрогенез – процесс формирования нервной трубки (головного и спинного мозга) из эктодермального зародышевого листка, а также кожного покрова, органов зрения и слуха;

б) хордогенез – процесс формирования из мезодермы хорды, мышц, почек, скелета, кровеносных сосудов;

в) процесс формирования из энтодермы кишечника и связанных с ним органов – печени, поджелудочной железы, легких.

Последовательное развитие тканей и органов, их дифференцировка происходит благодаря эмбриональной индукции – влиянию одних частей зародыша на развитие других частей. Это связано с деятельностью белков, которые включаются в работу на определенных стадиях развития зародыша. Белки регулируют активность генов, определяющих признаки организма. Таким образом, становится понятным, почему признаки определенного организма появляются постепенно. Все гены никогда не включаются в работу вместе. В конкретное время работает лишь часть генов.

 

Постэмбриональный период разделяется на следующие этапы:

1. Дорепродуктивный – постэмбриональный (рост и развитие до полового созревания);

2. Репродуктивный – период половой зрелости (осуществление репродуктивных функций);

3. Пострепродуктивный – старение и смерть.

 

У человека начальная стадия постэмбрионального периода характеризуется интенсивным ростом органов и частей тела в соответствии с установленными пропорциями. В целом постэмбриональный период человека подразделяется на следующие периоды:

– грудничковый (от рождения до 4 недель);

– грудной (от 4 недель до года);

– дошкольный (ясельный, средний, старший);

– школьный (ранний, подростковый);

– репродуктивный (молодой до 45 лет, зрелый до 65 лет);

– пострепродуктивный (пожилой до 75 лет и старческий – после 75 лет).

 

 



Поделиться:


Последнее изменение этой страницы: 2021-07-19; просмотров: 94; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.149.239.70 (0.01 с.)