Основные свойства магнитных материалов 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Основные свойства магнитных материалов



5.1.1. Основные сведения о магнитных свойствах и классификация магнитных материалов

Все без исключения материалы взаимодействуют с внешним магнитным полем, т.е. проявляют определенные магнитные свойства.

Объясняется это тем, что любой материал под действием внешнего магнитного поля приобретает магнитный момент, т.е. намагничивается. Поскольку магнитное поле образуется при движении электрического заряда, естественно полагать, что магнитные свойства материалов проявляются в результате движения электронов, входящих в состав атомов (ионов, молекул). Магнитным моментом обладают также и ядра атомов. Однако их влиянием на магнитные свойства атомов можно пренебречь, так как магнитный момент ядра на три десятичных порядка меньше магнитного момента электрона. Каждый электрон атома осуществляет два вида движения: орбитальное и спиновое, создавая соответственно орбитальный магнитный момент Морб и спиновой магнитный момент Мсп. Полный магнитный момент атома Мат представляет векторную сумму орбитальных и спиновых магнитных моментов всех электронов данного атома

                              (5.1)

В отсутствие внешнего магнитного поля магнитный момент атома Мат не равен нулю только при наличии у него незаполненной электронной оболочки. В заполненных электронных оболочках не только орбитальные, но и спиновые магнитные моменты электронов полностью скомпенсированы.

Для характеристики магнитных свойств вводят следующие величины:

В – магнитная индукция (плотность магнитного потока), Тл;

Н – напряженность магнитного поля, А/м;

М – намагниченность материала под действием магнитного поля, А/м – это векторная сумма магнитных моментов атомов Мат, находящихся в единице объема Vмагнитного материала:

                                         (5.2)

μ – относительная магнитная проницаемость (или магнитная проницаемость) – величина безразмерная;

кт – магнитная восприимчивость (величина безразмерная).

Магнитная индукция В материала является векторной суммой магнитных индукций внешнего (намагничивающего) поля Во и внутреннего поля Ввн:

               (5.3)

где Во0·Н – магнитная индукция поля в вакууме; Ввн0·М – магнитная индукция внутреннего поля; μ0 – магнитная проницаемость вакуума, называемая магнитной постоянной, μ0=4π·10–7, Гн/м.

Между намагниченностью материала М и напряженностью магнитного поля Н существует зависимость:

                                      (5.4)

где кт – магнитная восприимчивость, характеризующая способность материала изменять свой магнитный момент под действием внешнего магнитного поля. В вакууме кт =0.

Магнитная проницаемость μ характеризует способность материала намагничиваться. μпоказывает, во сколько раз магнитная индукция поля, созданного в данном материале, больше, чем в вакууме.

Кроме относительной магнитной проницаемости μ, в электротехнике пользуются также абсолютной магнитной проницаемостью μа, имеющей размерность Гн/м.

По магнитным свойствам все материалы разделяются на три основные группы: диамагнитные (диамагнетики), парамагнитные (парамагнетики) и ферромагнитные (ферромагнетики). Позже в самостоятельные группы были выделены еще два вида магнитных материалов: антиферромагнитные (антиферромагнетики) и ферримагнитные (ферримагнетики). Диа-, пара- и антиферромагнетики относят к слабомагнитным, а ферро- и ферримагнетики – к сильномагнитным материалам.

На практике под магнитными материалами понимают материалы, обладающие свойствами ферромагнетика или ферримагнетика.

5.1.2. Диамагнетики

Диамагнетизм заключается в индуцировании внешним магнитным полем в электронных оболочках атомов, ионов или молекул магнитного момента. Поэтому он присущ всем материалам независимо от их агрегатного состояния и вида химической связи. В чистом виде диамагнетизм можно наблюдать только у тех материалов, в которых магнитный момент атома Мат (5.1) равен нулю. Такие материалы называют диамагнетиками.

Диамагнетиками являются материалы, атомы, ионы или молекулы которых в отсутствие внешнего магнитного поля не имеют результирующего магнитного момента. В них существует только магнитный момент, наведенный внешним магнитным полем.

Для диамагнетиков характерно то, что у них вектор намагниченности направлен против вектора внешнего намагничивающего поля. По этой причине они подвергаются слабому выталкивающему действию последнего. Магнитная восприимчивость кт диамагнетиков отрицательная т <0) и по абсолютному значению очень мала (½ кт ½=10–4–10–8). В большинстве случаев кт не зависит от температуры и напряженности магнитного поля. Магнитная проницаемость μ у них немного меньше единицы (μ<1).

Диамагнетиками являются все инертные газы, водород, аммиак, ряд металлов (Сu,Ag,Аu,Zn,Pb,Hg), металлоиды (Р,S,Si), вещества неорганические (стекла, мрамор, вода) и органические (воск, нефть). Значения кт и μ некоторых диамагнетиков приведены в табл. 5.1.

Таблица 5.1

Значения магнитной восприимчивости кт и магнитной проницаемости m для некоторых диамагнетиков и парамагнетиков

Вещество km μ=1+ km

Диамагнетики

Висмут Вода Медь Кремний Водород –1,7.10–4 –0,88.10–5 –0,94.10–5 –0,3.10–5 –0,208.10–8 0,99983 0,9999912 0,9999906 0,999997 0,9999999979

Парамагнетики

СаО Платина Алюминий Воздух 5,8.10–3 2,93.10–4 2,14.10–4 3,65.10–7 1,0058 1,000293 1,000214 1,000000365

5.1.3. Парамагнетики

Парамагнетизм наблюдается у материалов, атомы (ионы) которых имеют нечетное число электронов (кроме Сu,Ag,Sb,Bi).

Атомы (ионы или молекулы) парамагнетиков в отсутствие внешнего магнитного поля уже обладают собственным магнитным моментом, который обусловлен некомпенсированными в атомах спиновыми магнитными моментами электронов. Но поскольку взаимодействие между магнитными моментами атомов (ионов или молекул) равно нулю или очень мало, их магнитные моменты расположены беспорядочно (рис. 5.1, а), и результирующая намагниченность М материала равна нулю.

Рис. 5.1. Схемотехническое изображение магнитных моментов атома в отсутствие внешнего магнитного поля в парамагнетиках (а), ферромагнетиках (б), антиферромагнетиках (в) и ферримагнетиках (г)

При приложении магнитного поля магнитные моменты атомов парамагнетиков ориентируются в направлении внешнего магнитного поля и усиливают его, т.е. проявляется положительная намагниченность т >0), вследствие чего они втягиваются в области с максимальной напряженностью магнитного поля. По абсолютному значению кт очень мала (½ кт ½=10–3–10–4) и не зависит от напряженности магнитного поля, но зависит от температуры. Магнитная проницаемость μ немного больше единицы (μ>1). Значения кт и μ некоторых парамагнетиков приведены в табл. 5.1.

Парамагнетизм проявляется у щелочных металлов (Na,К); переходных металлов (Ti,V,Cr,Мn), имеющих недостроенную 3d-электронную оболочку; редкоземельных элементов (лантаноидов) от церия Се до лютеция Lu, имеющих недостроенную 4f-электронную оболочку. Однако переходные металлы Fe,Co и Ni имеют большие значения кт и μ и являются типичными ферромагнетиками. Элементы Мn, Сr, их оксиды и некоторые соединения Мn, хотя и имеют значения кт и μтого же порядка, что и парамагнетики, по внутренней магнитной структуре они ближе к ферромагнетикам. На основании этого выделены в самостоятельную группу и названы антиферромагнетиками.

5.1.4. Ферромагнетики

Ферромагнетизм является частным случаем парамагнетизма. У ферромагнетиков, как и у парамагнетиков, магнитные моменты атомов (ионов) обусловлены некомпенсированными в них спиновыми магнитными моментами электронов. Однако у ферромагнетиков в отличие от парамагнетиков магнитные моменты атомов расположены не беспорядочно, а в результате обменного взаимодействия ориентированы параллельно друг другу (рис. 5.1, б) с образованием магнитных доменов.

Магнитные домены представляют собой элементарные объемы ферромагнетиков, находящиеся в состоянии магнитного насыщения. В домене некомпенсированные спиновые магнитные моменты электронов всех атомов выстроены параллельно друг другу. Доменная структура образуется в отсутствие внешнего магнитного поля в результате самопроизвольной (спонтанной) намагниченности, которая происходит при температурах ниже некоторой так называемой точкой Кюри Тк. Для чистого железа Тк= 768°С, никеля Тк =358°С, кобальта Тк =113°С.

Разделение всего объема ферромагнетика на множество доменов энергетически выгодно. В отсутствие внешнего магнитного поля магнитные моменты доменов направлены так, что их результирующий магнитный момент равен или близок нулю. Домены имеют размеры около 0,001–10 мм3 при толщине пограничных слоев между ними (границ) в несколько десятков ангстрем. В доменных границах происходит постепенное изменение направления вектора намагниченности от одного домена к направлению вектора намагниченности в соседнем домене. Характерная особенность ферромагнетиков – их доменное строение, которое и обусловливает специфику магнитных свойств: магнитное насыщение, гистерезис, магнитострикцию.

Магнитная восприимчивость кт и магнитная проницаемость μ ферромагнетиков имеют большие положительные значения (до 106) и сильно зависят от напряженности внешнего магнитного поля и температуры. Ферромагнетики легко намагничиваются даже в слабых магнитных полях.

В отсутствие внешнего магнитного поля направления векторов намагниченности различных доменов не совпадают, и результирующая намагниченности всего образца ферромагнетика равна или близка нулю. При приложении магнитного поля магнитные моменты доменов начинают ориентироваться по полю, а границы между доменами смещаются, в результате образец намагничивается. Это намагничивание называют техническим намагничиванием и его необходимо отличать от спонтанного намагничивания, которое всегда присутствует внутри доменов.

При нагревании ферромагнетика его магнитная проницаемость возрастает, так как облегчаются процессы смещения доменных границ. При температуре, равной и выше Тк, интенсивное тепловое движение ионов, находящихся в узлах кристаллической решетки, начнет изменять параметры решетки, в результате разрушается спонтанная намагниченность, домены перестают существовать – материал перейдет из ферромагнитного состояния в парамагнитное (некоторые редкоземельные элементы переходят в антиферромагнитное состояние), и величина m приблизится к единице (рис. 5.2).

Рис. 5.2. Зависимость магнитной проницаемости μ ферромагнетиков от температуры Т

Для характеристики изменения магнитной проницаемости m при изменении температуры на один Кельвин пользуются температурным коэффициентом магнитной проницаемости ТКμ, К–1

                                           (5.5)

К ферромагнетикам относятся три переходных металла (железо, кобальт и никель), имеющих недостроенную 3d-электронную оболочку, и сплавы на их основе; шесть редкоземельных металлических элементов (гадолиний, тербий, диспрозий, гольмий, эрбий и тулий), имеющих очень низкие значения Тк (табл. 5.2), что затрудняет их практическое применение; сплавы системы Мn–Сu–Аl (сплавы Гейслера) и соединения MnSb, MnBi и др., в которых атомы марганца находятся на расстояниях, больших, чем в решетке кристалла чистого марганца.

Таблица 5.2

Точка Кюри Тк (точка Нееля Тн) ферромагнитных лантаноидов и сплавов на основе марганца

Вещество Точка Кюри (точка Нееля), ˚С Вещество Точка Кюри (точка Нееля), ˚С
Гадолий 17 Эрбий –253(–188)
Тербий –54(–43) Тулий –251(–213)
Диспрозий –188(–94) Сплав Гейслера 200
Гольмий –253(–140) Сплав марганца с 50% висмута 340

Примечание. Ниже Тк. материал находится в ферромагнитном состоянии, между Тк, и Тн, – в антиферромагнитном, выше Тн – в парамагнитном.

5.1.5. Антиферромагнетики

Антиферромагнетики – это материалы, атомы (ионы) которых обладают магнитным моментом, обусловленным, как у пара- и ферромагнетиков, нескомпенсированными спиновыми магнитными моментами электронов. Однако у антиферромагнетиков магнитные моменты атомов под действием обменного взаимодействия приобретают не параллельную ориентацию, как у ферромагнетиков, а антипараллельную (противоположную) (см. рис. 5.1, в) и полностью компенсируют друг друга. Поэтому антиферромагнетики не обладают магнитным моментом, и их магнитная восприимчивость кт близка по величине к кт парамагнетиков.

Для антиферромагнетиков, как и для ферромагнетиков, существует определенная температура, называемая точкой Нееля Тн при (и выше) которой антиферромагнитный порядок разрушается, материал переходит в парамагнитное состояние.

К антиферромагнетикам относятся: Mn, Cr, CuO, NiO, FeO, Cr2O3, NiCr, MnO, Mn2O3, MnS, VO2 и довольно большое количество других соединений.

5.1.6. Ферримагнетики

Ферримагнетики имеют доменную структуру, состоящую из двух или более подрешеток, связанных антиферромагнитно (антипараллельно). Поскольку подрешетки образованы атомами (ионами) различных химических элементов или неодинаковым их количеством, они имеют различные по величине магнитные моменты, направленные антипараллельно (рис. 5.1, г). В результате появляется отличная от нуля разность магнитных моментов подрешеток, приводящая к спонтанному намагничиванию кристалла.

Таким образом, ферримагнетики можно рассматривать как нескомпенсированные антиферромагнетики. Свое название эти материалы получили от ферритов – первых некомпенсированных антиферромагнетиков, а магнетизм ферритов назвали ферримагнетизмом. У ферритов доменная структура, как и у ферромагнетиков, образуется при температурах ниже точки Кюри. К ферритам применимы все магнитные характеристики, введенные для ферромагнетиков. В отличие от ферромагнетиков они имеют меньшую величину индукции насыщения, более сложную температурную зависимость индукции и в ряде случаев высокое значение удельного сопротивления (r=10–3–1010 Ом·м).

Ферромагнетизм в металлах объясняется наличием обменного взаимодействия, которое образуется между соприкасающимися атомами, а также взаимной ориентацией спиновых магнитных моментов. В ферримагнетиках магнитные моменты ионов ориентированы антипараллельно.

Ферриты представляют собой сложные системы окислов металлов с общей химической формулой MeO·Fe2O3, где МеО – окисел двухвалентного металла. Ферриты – это ферримагнитная керамика. Высокое удельное сопротивление практически исключает возникновение в ферритах вихревых токов при воздействии на них переменных магнитных полей, что, в свою очередь, позволяет применять ферриты в качестве магнитных материалов в диапазоне радиочастот, включая СВЧ.

В электротехнике в качестве магнитных материалов широкое применение нашли ферромагнитные и ферримагнитные материалы. Диамагнетики и парамагнетики используют в качестве рабочих тел в квантовых парамагнитных усилителях и генераторах.



Поделиться:


Последнее изменение этой страницы: 2021-05-12; просмотров: 166; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.144.36.141 (0.018 с.)