Полевой транзистор с изолированным затвором 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Полевой транзистор с изолированным затвором



Полевые транзисторы

А теперь давайте поговорим о полевых транзисторах. Что можно предположить уже по одному их названию? Во-первых, поскольку они транзисторы, то с их помощью можно как-то управлять выходным током. Во-вторых, у них предполагается наличие трех контактов. И в-третьих, в основе их работы лежит p-n переход. Что нам на это скажут официальные источники?

Полевыми транзисторами называют активные полупроводниковые приборы, обычно с тремя выводами, в которых выходным током управляют с помощью электрического поля. (electrono.ru)

Определение не только подтвердило наши предположения, но и продемонстрировало особенность полевых транзисторов — управление выходным током происходит посредством изменения приложенного электрического поля, т.е. напряжения. А вот у биполярных транзисторов, как мы помним, выходным током управляет входной ток базы.
Еще один факт о полевых транзисторах можно узнать, обратив внимание на их другое название — униполярные. Это значит, что в процессе протекания тока у них участвует только один вид носителей заряда (или электроны, или дырки).
    Три контакта полевых транзисторов называются исток (источник носителей тока), затвор (управляющий электрод) и сток (электрод, куда стекают носители). Структура кажется простой и очень похожей на устройство биполярного транзистора. Но реализовать ее можно как минимум двумя способами. Поэтому различают полевые транзисторы с управляющим p-n переходом и с изолированным затвором.

     Вообще, идея последних появилась еще в 20-х годах XX века, задолго до изобретения биполярных транзисторов. Но уровень технологии позволили реализовать ее лишь в 1960 году. В 50-х же был сначала теоретически описан, а затем получил воплощение полевой транзистор с управляющим p-n переходом. И, как и их биполярные «собратья», полевые транзисторы до сих пор играют в электронике огромную роль.

Полевой транзистор с управляющим p-n-переходом

Итак, как же устроен первый тип полевых транзисторов? В основе устройства лежит пластинка из полупроводника с проводимостью (например) p-типа. На противоположных концах она имеет электроды, подав напряжение на которые мы получим ток от истока к стоку. Сверху на этой пластинке есть область с противоположным типом проводимости, к которой подключен третий электрод — затвор. Естественно, что между затвором и p-областью под ним (каналом) возникает p-n переход. А поскольку n-слой значительно у же канала, то большая часть обедненной подвижными носителями заряда области перехода будет приходиться на p-слой. Соответственно, если мы подадим на переход напряжение обратного смещения, то, закрываясь, он значительно увеличит сопротивление канала и уменьшит ток между истоком и стоком. Таким образом, происходит регулирование выходного тока транзистора с помощью напряжения (электрического поля) затвора.

Можно провести следующую аналогию: p-n переход — это плотина, перекрывающая поток носителей заряда от истока к стоку. Увеличивая или уменьшая на нем обратное напряжение, мы открываем/закрываем на ней шлюзы, регулируя «подачу воды» (выходной ток).

Итак, в рабочем режиме полевого транзистора с управляющим p-n переходом напряжение на затворе должно быть либо нулевым (канал открыт полностью), либо обратным.
Если величина обратного напряжения станет настолько большой, что запирающий слой закроет канал, то транзистор перейдет в режим отсечки.

Даже при нулевом напряжении на затворе, между затвором и стоком существует обратное напряжение, равное напряжению исток-сток. Вот почему p-n переход имеет такую неровную форму, расширяясь к области стока.

Само собой разумеется, что можно сделать транзистор с каналом n-типа и затвором p-типа. Сущность его работы при этом не изменится.

Условные графические изображения полевых транзисторов приведены на рисунке (а — с каналом p-типа, б — с каналом n-типа). Стрелка здесь указывает направление от p-слоя к n-слою.

Тиристоры

Структура тиристора

Тиристор - это четырёхслойный полупроводниковый прибор, слои расположены последовательно, их типы проводимости чередуются: p‑n‑p‑n. p‑n‑переходы, между слоями на рисунке обозначены как «П1», «П2» и «П3». Контакт, присоединенный к внешнему p‑слою называется анодом, к внешнему n‑слою — катодом. В принципе тиристор может иметь до двух управляющих электродов, присоединённых к внутренним слоям. Но обычно изготавливаются тиристоры с одним управляющим электродом, либо вообще без управляющих электродов (такой прибор называется динистором).

 

 

Для включения тиристора достаточно кратковременно подать сигнал на управляющий электрод — тиристор откроется и будет оставаться в этом состоянии пока ток через тиристор не станет меньше тока удержания.

Итак, главный принцип работы тиристора и схем на его основе — открываем тиристор подачей сигнала на управляющий электрод, закрываем снижая ток анод-катод.

Как и в биполярном транзистор главную роль в принципе действия играют неосновные носители заряда (ННЗ) и обратно-смещенный p-n- переход. Пока неосновных носителей мало переход закрыт, но стоит подкинуть ННЗ к переходу и он откроется.
В тиристоре есть два основных способа добавить ННЗ:
1) закачать ток в управляющий электрод;
2) поднять напряжение настолько чтобы возник лавинный пробой.

Физические процессы

 

Одну четырехслойную полупроводниковую структуру можно представить как две трехслойные, если посмотреть на рисунок, то в трехслойных структурах можно увидеть два биполярных транзистора n-p-n и p-n-p структуры.


     Пока оба транзистора закрыты, ток через них не протекает. Но стоит открыться хоть одному из них, то он тут же откроет второй.    Ток коллектора первого транзистора поступит в базу второго и откроет его, а ток коллектора второго, будет являться базовым для первого и будет поддерживать открытым первый транзистор. Получается, что оба транзистора поддерживают друг друга в открытом состоянии. И чтобы они закрылись, нужно снизить ток через них ниже определенной величины, так называемого тока удержания.

 

 

         

 

  Применение тиристоров: Тиристоры имеют широкий диапазон применений (регуляторы мощности, управляемые выпрямители, генераторы импульсов и др.), выпускаются с рабочими токами от долей ампера до тысяч ампер и с напряжениями включения от единиц до тысяч вольт.

 

Классификация:

В зависимости от количества выводов можно вывести классификацию тиристоров:

- тиристор с двумя выводами называется динисторами (соответственно имеет только анод и катод);

- тиристор с тремя и четырьмя выводами, называются триодными или тетродными.

Также бывают тиристоры и с большим количеством чередующихся полупроводниковых областей. Одним из самых интересных является симметричный тиристор (симистор), который включается при любой полярности напряжения.

Основные типы тиристоров

Кроме запираемых тиристоров разработана широкая гамма тиристоров различных типов, отличающихся быстродействием, процессами управления, направлением токов в проводящем состоянии и т.д. Среди них следует отметить следующие типы:

· тиристор-диод, который эквивалентен тиристору со встречно-параллельно включенным диодом (рис. 6.12,a);

· диодный тиристор (динистор), переходящий в проводящее состояние при превышении определённого уровня напряжения, приложенного между А и С (рис. 6,b);

· запираемый тиристор (рис. 6.12,c);

· симметричный тиристор или симистор, который эквивалентен двум встречно-параллельно включенным тиристорам (рис. 6.12,d);

· быстродействующий инверторный тиристор (время выключения 5-50 мкс);

· тиристор с полевым управлением по управляющему электроду, например, на основе комбинации МОП-транзистора с тиристором;

· оптотиристор, управляемый световым потоком.

Рис. 6. Условно-графическое обозначение тиристоров: a) – тиристор-диод; b) – диодный тиристор (динистор); c) – запираемый тиристор; d) – симистор

Полупроводниковые технологии все еще разрабатываются и совершенствуются. За несколько десятилетий появились новые разновидности тиристоров, которые имеют некоторые отличия.

  • Динисторы или диодные тиристоры. Отличаются тем, что имеют только два вывода. Открываются подачей на анод и катод высокого напряжения в виде импульса. Называют еще «неуправляемые тиристоры».
  • Тринисторы или триодные тиристоры. В них есть управляющий электрод, но управляющий импульс может подаваться:
    • На управляющий выход и катод. Название — с управлением катодом.
    • На управляющий электрод и анод. Соответственно — управление анодом.

Есть также разные виды тиристоров по способу запирания. В одном случае достаточно уменьшения анодного тока ниже уровня тока удержания. В другом случае — подается запирающее напряжение на управляющий электрод.

По проводимости

Мы говорили, что проводят тиристоры ток только в одном направлении. Обратной проводимости нет. Такие элементы называют обратно-непроводящие, но существуют не только такие. Есть и другие варианты:

  • Имеют невысокое обратное напряжение, называются обратно-проводящие.
  • С ненормируемой обратной проводимостью. Ставят в схемах, где обратное напряжение возникнуть не может.
  • Симисторы. Симметричные тиристоры. Проводят ток в обоих направлениях.

Классификация по особым режимам работы

Еще можно выделить следующие подвиды тиристоров:

  • Запираемые и незапираемые. Принцип работы тиристора незапираемого немного другой. Он находится в открытом состоянии когда плюс приложен к аноду, минус — на катоде. Переходит в закрытое состоянии при смене полярности.
  • Быстродействующие. Имеют малое время перехода из одного состояния в другое.
  • Импульсные. Очень быстро переходит из одного состояние в другое, используется в схемах с импульсными режимами работы.

Основная область использования тиристоров — в качестве электронного ключа, служащего для замыкания и размыкания электрической цепи. В общем много привычных устройств построены на тиристорах. Например, гирлянда с бегущими огнями, выпрямители, импульсные источники тока, выпрямители и многие другие.

Таким образом, в тиристоре существует положительная обратная связь по току — увеличение тока через один эмиттерный переход приводит к увеличению тока через другой эмиттерный переход.
Тиристор — не полностью управляющий ключ. То есть перейдя в открытое состояние, он остается в нем даже если прекращать подавать сигнал на управляющий переход, если подается ток выше некоторой величины, то есть ток удержания.

Терморезисторы

Терморезисторы - это полупроводниковые резисторы, в которых используется зависимость электрического сопротивления полупроводника от температуры.

Различают два типа терморезисторов: термистор, сопротивление которого с ростом температуры падает (с отрицательным температурным коэффициентом сопротивления ТКС), и позистор, у которого сопротивление с повышением температуры возрастает (с положительным ТКС).

В термисторах (прямого подогрева) сопротивление изменяется или под влиянием тепла, выделяющегося в них при прохождении электрического тока, или в результате изменения температуры термистора при изменении теплового облучения термистора (например, при изменении температуры окружающей среды).

Уменьшение сопротивления полупроводника с увеличением температуры может быть обусловлено следующими причинами - увеличением концентрации носителей заряда и увеличением их подвижности.

Основная часть термисторов, выпускаемых промышленностью, изготовлена из поликристаллических окисных полупроводников - из окислов металлов.

Конструктивно термисторы оформляют в виде: цилиндров, стержней, дисков, пластин или бусинок и получают методами керамической технологии, т.е. путем обжига заготовок при высокой температуре.

Материалом для изготовления позисторов служит титан - бариевая керамика с примесью редкоземельных элементов. Такой материал обладает аномальной температурной зависимостью: в узком диапазоне температур (диапазоне температур выше точки Кюри) его удельное сопротивление увеличивается на несколько порядков с увеличением температуры.

Конструктивно позисторы оформляют аналогично термисторам.

 

Тензорезисторы

Тензорезистор - это полупроводниковый резистор, в котором используется зависимость электрического сопротивления от механической деформации.

Назначение - измерение давлений и деформаций.

Принцип действия полупроводникового тензоризистора основан на тензорезистивном эффекте - на изменении электрического сопротивления полупроводника под действием механических деформаций.

Для изготовления тензорезисторов чаще всего используют кремний с электропроводностью n - и p-типов. Заготовки такого кремния режут на мелкие пластинки, шлифуют, наносят контакты и присоединяют выводы.

Варикап

Оптоэлекторнные приборы

Оптоэлектронными называют приборы, которые чувствительны к электромагнитному излучению в видимой, инфракрасной и ультрафиолетовой областях, а также приборы, производящие или использующие такое излучение.

Излучение в видимой, инфракрасной и ультрафиолетовой областях относят к оптическому диапазону спектра. Обычно к указанному диапазону относят электромагнитные волны с длиной от 1 нм до 1 мм, что соответствует частотам примерно от 0,5·1012 Гц до 5·1017 Гц. Иногда говорят о более узком диапазоне частот – от 10 нм до 0,1 мм (~5·1012…5·1016 Гц). Видимому диапазону соответствуют длины волн от 0,38 мкм до 0,78 мкм (частота около 1015 Гц).

На практике широко используются источники излучения (излучатели), приемники излучения (фотоприемники) и оптроны (оптопары).

Оптроном называют прибор, в котором имеется и источник, и приемник излучения, конструктивно объединенные и помещенные в один корпус.

Из источников излучения нашли широкое применение светодиоды и лазеры, а из приемников – фоторезисторы, фотодиоды, фототранзисторы и фототиристоры.

Широко используются оптроны, в которых применяются пары светодиод-фотодиод, светодиод-фототранзистор, светодиод-фототиристор.

Основные достоинства оптоэлектронных приборов:

высокая информационная емкость оптических каналов передачи информации, что является следствием больших значений используемых частот;

полная гальваническая развязка источника и приемника излучения;

отсутствие влияния приемника излучения на источник (однонаправленность потока информации);

невосприимчивость оптических сигналов к электромагнитным полям (высокая помехозащищенность).

Оптрон - прибор, состоящий из излучателя света и фотоприёмника, связанных друг с другом оптически и помещенных в общем корпусе. Иногда О. называют также пару «излучатель-фотоприёмник» с любыми видами оптической и электрической связи между ними. О. используют для связи отдельных частей радиоэлектронных устройств (главным образом вычислительной и измерительной техники и автоматики), при которой одновременно обеспечивается электрическая развязка между ними (как в трансформаторе), а также для бесконтактного управления электрическими цепями (аналогично реле). Разработка О. началась в 60-е гг. 20 в.

 

Выпрямители

Выпрямительные устройства относятся ко вторичным источникам электропитания, для которых первичным источником являются сети переменного тока. Выпрямитель - это устройство, которое преобразует переменное напряжение питающей сети в однонаправленное пульсирующее. Именно однонаправленное пульсирующее и назвать его постоянным немного некорректно. Существует и несколько иное определение: выпрямитель предназначен для преобразования переменного напряжения в импульсное напряжение одной полярности.

Наиболее часто в выпрямителях применяются полупроводниковые диоды. Принцип выпрямления переменного напряжения основан на нелинейной ВАХ полупроводникового диода, у которого сопротивление в прямом и обратном включении p-n-перехода сильно отличаются.

Классификация выпрямителей

1) По мощности на выходе:

- повышенной мощности (свыше 100 кВт);

- средней мощности (менее 100 кВт);

- малой мощности (до 0,6 кВт).

2) По количеству фаз сети питания:

- однофазные;

- трехфазные.

3 ) По количеству импульсов одного полюса выпрямленного напряжения за один период:

- однотактные (имеют один полупериод);

- двухтактные (два полупериода).

4) По способу выпрямления:

- управляемые;

- неуправляемые.

5) По видам нагрузки:

- активно-емкостная нагрузка;

- активно-индуктивная нагрузка;

- активная.

6) По схеме выпрямления:

- простые (однофазные и трехфазные, нулевые и мостовые схемы);

- сложные (несколько простых схем соединяются последовательно или параллельно).

7) По способу подключения выпрямителей ко вторичной обмотке трансформатора:

- нулевые схемы, с использованием нулевой (средней) точки вторичной обмотки трансформатора;

- мостовые схемы, в которых нулевая точка изолирована или вторичные обмотки трансформатора соединены в треугольник.

 

Соотношения между параметрами в выпрямительном устройстве во многом зависят от схемы выпрямления. Под схемой выпрямления понимают схему соединения обмоток трансформатора и порядок присоединения вентилей (диодов) ко вторичным обмоткам трансформатора.

Выпрямитель может быть представлен в виде структурной схемы, представленной на рис. 1.

 

 

Рис. 1 – Структурная схема выпрямителя

 

Охарактеризуем основные элементы схемы:

а) силовой трансформатор служит для согласования входного и выходного напряжения выпрямителя и электрического разделения отдельных цепей выпрямителя (т.е. разделяет питающую сеть и сеть нагрузки);

б) блок вентилей обеспечивает одностороннее протекание тока в цепи нагрузки, в результате чего переменное напряжение преобразуется в пульсирующее;

в) сглаживающий фильтр предназначен для уменьшения пульсации напряжения на нагрузке до требуемого значения;

г) стабилизатор напряжения, служащий для стабилизации среднего значения выпрямленного напряжения при колебаниях напряжения питающей сети или при изменении тока нагрузки.

Двухполупериодная схема

Для снижения коэффициента пульсаций и ёмкости фильтра используют другую схему – двухполупериодную. Называется она – диодный мост. Переменное напряжение поступает на точку соединения разноименных полюсов диодов, а постоянное по знаку с одноименных. Выходное напряжение такого моста называют выпрямленным пульсирующим (или не стабилизированным). Именно такое включение диодов наиболее распространено во всех сферах электроники.

Двухполупериодная схема

 

 

На эпюрах вы видим, что обе вторая полуволна переменного напряжения «переворачивается» и поступает в нагрузку. В первую половину периода ток протекает через диоды VD1-VD4, во вторую через пару VD2-VD3. Параметры такие же, как и двухполупериодной схемы со средним выводом, кроме обратного напряжения (оно в два раза меньше). Положительная полуволна (с верхнего по схеме вывода трансформатора) проходит через диод VD2, затем через нагрузку, затем через VD3 ко второму выводу трансформатора. При смене направления тока работают диоды VD4, VD1. Недостатком схемы считается удвоенное число диодов.

 

Напряжение на выходе пульсирует с частотой в 100 Гц.

Как работает С-фильтр?

Принцип работы сглаживающих фильтров основывается на свойствах конденсатора и катушки индуктивности. Они выполняют роль резервуара энергии. Как известно, напряжение на конденсаторе не может измениться мгновенно, а на индуктивности ток не может мгновенно возрасти или исчезнуть. Эти свойства и положены в основу работы сглаживающих фильтров, рассмотрим это на примерах.

Схема С-фильтра (емкостной)

На рисунке выше, к первичной обмотке трансформатора подводиться переменное напряжение U, ко вторичной обмотке подсоединена нагрузка Rн, через которую должен протекать постоянный (выпрямленный) ток. Конденсатор С – фильтрующий элемент.

Вид выходных тока и напряжения на С-фильтре

Действия диода во вторичной цепи трансформатора описывает серая, пульсирующая кривая. Если быть точным, диод обрезал отрицательную часть переменного напряжения, он пропускает только положительную волну, а при приложении отрицательного напряжения – запирается. Конденсатор С, как уже говорилось раннее – резервуар энергии. Когда диод открыт и ток протекает через нагрузку, то конденсатор (подсоединен параллельно) заряжается до величины напряжения в цепи. А когда диод закрыт (отрицательная волна синусоиды), благодаря наличию емкости, уровень напряжения не может резко снизиться. Конденсатор постепенно разряжается через нагрузку, таким образом, сглаживая огромные скачки уровня напряжения. Разряжается он до следующей положительной волны, а точнее, когда напряжение на катоде диода превысит напряжение на конденсаторе. И он вновь начнет заряжаться. Такая цикличность действий будет происходить постоянно. Красный цвет линии изображает работу такой смоделированной системы.

Если в качестве выпрямителя применять диодный мост, то выходные ток и напряжения приобретут следующий вид:

 

Благодаря тому, что диодный мост работает и при положительном, и при отрицательном напряжении - пульсность увеличилась в два раза.

Обратите внимание на вид тока (синий), из-за наличия конденсатора ток имеет резкий скачок, что в свою очередь не есть хорошо для любого электроприбора. На помощь в сложившейся ситуации приходит катушка индуктивности.

Управляемые выпрямители

Часто требуется не только преобразовывать переменное напряжение в постоянное, но и плавно изменять значение выпрямленного напряжения.

Выпрямители, которые совмещают выпрямление переменного напряжения (тока) с управлением выпрямленным напряжением (током), называют управляемыми выпрямителями.

Основным элементом современных управляемых выпрямителей является тиристор.

Управление напряжением на выходе управляемого выпрямителя сводится к управлению во времени моментом отпирания (включения) тиристора. Это осуществляется за счет сдвига фаз между анодным напряжением и напряжением, подаваемым на управляющий электрод тиристора. Такой сдвиг фаз называют углом управления, а способ управления называют фазовым.

Управление величиной а осуществляют с помощью фазовращающей R2С-цепи, которая позволяет изменять угол α от 0 до 90°. При этом выпрямленное напряжение регулируют от наибольшего значения до его половины.

Резистором R1 изменяют напряжение, подаваемое на управляющий электрод тиристора.

Диод Д обеспечивает подачу на управляющий электрод положительных однополярных импульсов.

К недостаткам можно отнести нестабильность угла α (т.к. свойства тиристора и кривая открывания подвержены влиянию внешних факторов (температуры)). (Уменьшают длительность импульсов, подаваемых на управляющий электрон).

 

ЭЛЕКТРОННЫЕ СТАБИЛИЗАТОРЫ

 

Параметрические стабилизаторы обеспечивают невысокую степень стабилизации по сравнению с электронными стабилизаторами. Схема такого стабилизатора представлена на рис.3. На этой схеме стабилитрон является источником опорного напряжения и обеспечивает постоянный потенциал базы транзистора, включенного по схеме эмиттерного повторителя.

 

Здесь выходное напряжение равно опорному, если не учитывать очень малое падение напряжения на эмиттерном переходе. Особенность данной схемы заключается в том, что ток нагрузки может в несколько раз превышать номинальный ток стабилитрона.

Более лучшую стабилизацию, по сравнению с вышеуказанной схемой, обеспечивают схемы, в состав которых входят усилители разносного сигнала между выходным напряжением и опорным. Из схемы на рис. 4 видно, что транзистор VT1 является регулирующим, а VT2 усилительным элементом. Часть выходного напряжения с делителя R1, R2, R3, поступает на базу усилительного транзистора VT2, у которого потенциал фиксирован стабилитроном VD1. На VT2 происходит усиление разности этих напряжений, затем усиленная разность напряжений поступает на базу регулирующего транзистора VT1, где и происходит управление выходным напряжением. Это происходит следующим образом. С увеличением входного напряжения выходное также увеличивается, усилительный транзистор VT2 приоткрывается, ток на его коллекторе увеличивается, а потенциал падает и на коллекторе и на базе регулирующего транзистора VT1. А это значит что регулирующий транзистор подзапирается и гасит избыток выходного напряжения. В данной схеме есть возможность регулировки выходного напряжения, которая осуществляется при помощи переменного резистора R2.

Существует огромное множества схем транзисторных стабилизаторов. Но принцип работы остается прежним: стабилизация выходного напряжения осуществляется за счет гашения избытка входного напряжения на регулирующем транзисторе. Стабилизаторами напряжения хорошо сглаживаются пульсации выпрямленного напряжения, и поэтому при наличии его в схеме, сглаживающий фильтр может отсутствовать. При этом, чтобы улучшить сглаживания, выход стабилизатора соединяют с базой усилительного транзистора через конденсатор.

 

Электронные усилители

Усилители - это устройства, предназначенные для усиления напряжения, тока и мощности электрического сигнала.

Классификация усилителей:

1) в зависимости от усиливаемого параметра усилители напряжения, тока, мощности

2) по роду усиливаемых сигналов:

- усилители гармонических (непрерывных) сигналов;

- усилители импульсных сигналов (цифровые усилители).

3) по полосе усиливаемых частот:

- усилители постоянного тока;

- усилители переменного тока

- низкой частоты, высокой, сверхвысокой и т.д.

4) по характеру частотной характеристики:

- резонансные (усиливают сигналы в узкой полосе частот);

- полосовые (усиливают определенную полосу частот);

- широкополосные (усиливают весь диапазон частот).

5) по типу усилительных элементов:

- на электровакуумных лампах;

- на полупроводниковых приборах (усилители на полевых и биполярных транзисторах);

- на интегральных микросхемах.

 

Простейший усилитель представляет собой схему на основе транзистора. Использование усилителей вызвано тем, что обычно электрические сигналы (напряжения и токи), поступающие в электронные устройства малы по амплитуде и возникает необходимость увеличивать их до требуемой величины, достаточной для дальнейшего использования (преобразования, передачи, подачи на нагрузку).

На рисунке 1 представлены устройства, необходимые для работы усилителя.

 

 

 

 

Рисунок 1 - Окружение усилителя

 

Мощность, выделяющаяся на нагрузке усилителя, является преобразованной мощностью его источника питания, а входной сигнал только управляет ею. Усилители питаются от источников постоянного тока.

Обычно усилитель состоит из нескольких каскадов усиления (рис. 2). Первые каскады усиления, предназначенные, главным образом для усиления напряжения сигнала, называют предварительными. Их схемное построение определяется типом источника входного сигнала.

Каскад, служащий для усиления мощности сигнала, называют оконечным или выходным. Их схемотехника определяется видом нагрузки. Так же, в состав усилителя могут входить промежуточные каскады, предназначенные для получения необходимого коэффициента усиления и (или) формирования необходимых характеристик усиливаемого сигнала.

 

Структура усилителя

 

Рисунок 2 - Структура усилителя

 

При выборе усилителя исходят из параметров усилителя:

· Выходная мощность, измеряется в Ватах. Выходная мощность варьируется в широких пределах в зависимости от назначения усилителя, например в усилителях звука - от милливатт в наушниках до десятков и сотен ватт в аудиосистемах.

· Диапазон частот, измеряется в Герцах. Например, тот же усилитель звука обычно должен обеспечивать усиление в диапазоне частот 20–20 000 Гц, усилитель телевизионного сигнала (изображение + звук) – 20 Гц – 10 МГц и выше.

· Нелинейные искажения, измеряются в процентах %. Характеризуют искажение формы усиливаемого сигнала. Обычно тем меньше данный параметр, тем лучше.

· КПД (коэффициент полезного действия), измеряются в процентах %. Показывает, какая часть энергии источника питания расходуется на выделение мощности в нагрузке. Дело в том, что часть мощности источника тратится бесполезно, в большей степени это тепловые потери – протекание тока всегда вызывает нагрев материала. Особенно критичен данный параметр для устройств с автономным питанием (от аккумуляторов и батарей).

Усилители постоянного тока

Устройства, предназначенные для усиления сигнала очень низких частот (порядка долей Гц), имеющие амплитудно-частотную характеристику до самых низких частот называются усилителями постоянного тока (УПТ).

Требования к характеристикам УПТ:

 - в отсутствие входного сигнала должен отсутствовать выходной сигнал;

- при изменении знака входного сигнала должен изменять знак и выходной сигнал;

- напряжение на нагрузочном устройстве должно быть пропорционально входному напряжению.

Наилучшим образом данным требованиям удовлетворяют УПТ, построенные на дифференциальных балансных каскадах. Они так же обеспечивают эффективную борьбу с так называемым дрейфом нуля УПТ. Построены по принципу четырехплечевого моста.

 

Уравнение баланса моста:

При изменении Ек баланс не нарушается и в нагрузочном резисторе Rнток равен нулю. С другой стороны, при пропорциональном изменении сопротивлений резисторов R1, R2или R3, R4,баланс моста тоже не нарушается. Если заменить резисторы R2, R3транзисторами, то получим дифференциальную схему, очень часто применяемую в УПТ.

 

В дифференциальном усилителе сопротивления резисторов R2, R3в коллекторных цепях транзисторов выбирают равными, режимы обоих транзисторов устанавливают одинаковыми. В таких усилителях подбирают пары транзисторов со строго идентичными характеристиками.

На стабильность электрических режимов существенное влияние оказывает сопротивление резистора R1, который стабилизирует ток транзисторов. Чтобы можно было использовать резистор с большим сопротивлением Rl, увеличивают напряжение источника питания Ек до значения Е2Е1, а в интегральных микросхемах часто вместо резистора R1применяют стабилизатор постоянного тока, который выполняют на 2—4 транзисторах.

Переменный резистор Rп служит для балансировки каскада (для установки нуля). Это необходимо в связи с тем, что не удается подобрать два абсолютно идентичных транзистора и резисторы с равными сопротивлениямиR2, R3. При изменении положения движка потенциометра Rп изменяются сопротивления резисторов, включенных в коллекторные цепи транзисторов, и, следовательно, потенциалы на коллекторах. Перемещением движка потенциометра Rп добиваются нулевого тока в нагрузочном резисторе Rнв отсутствие входного сигнала.

При изменении э. д. с. источника коллекторного питания Е1или смещения Е2изменяются токи обоих транзисторов и потенциалы их коллекторов. Если транзисторы идентичны и сопротивления резисторов R2, R3в точности равны, то тока в резисторе RH за счет изменения э. д. с. El, Е2не будет. Если транзисторы не совсем идентичны, то появится ток в нагрузочном резисторе, однако он будет значительно меньше, чем в обычном, небалансном УПТ.

Аналогично изменения характеристик транзисторов вследствие изменения температуры окружающей среды практически не будут вызывать тока в нагрузочном резисторе.

В то же время при подаче входного напряжения на базу транзистора Т1изменятся его коллекторный ток и напряжение на его коллекторе, что вызовет появление напряжения на нагрузочном резисторе Rн.

 

При тщательном подборе транзисторов и резисторов, при стабилизации напряжений источников питания дрейф удается снизить до 1—20 мкВ/°С или при работе в температурном диапазоне от —50 до +50°С составит 0,1—2 мВ, т. е. в сравнении с небалансным УПТ он может быть уменьшен в 20—100 раз.

По таким же схемам можно выполнять усилители на полевых транзисторах. Аналогичные балансные схемы могут быть построены на основе эмиттерных и истоковых повторителей.

 

Операционные усилители

Операционный усилитель – дифференциальный усилитель постоянного тока с большим коэффициентом усиления, предназначенный для выполнения различных операций над аналоговыми величинами при работе в схемах с отрицательной обратной связью.

ОУ является универсальным блоком с характеристиками, близкими к идеальным, на основе которого можно построить множество различных электронных узлов.

Операционные усилители

Операционный усилитель (ОУ) представляет собой усилитель постоянного и переменного тока с большим коэффициентом усиления и глубокой отрицательной обратной связью.

Позволяет реализовывать большое количество электронных устройств, но традиционно называется усилителем.

Можно сказать, что операционные усилитель являются основой всей аналоговой электроники. Широкое распространение ОУ связано с их универсальностью (возможность построения на их основе различных электронных устройств, причём, как аналоговых, так и импульсных), широким диапазоном частот (усиление сигналов постоянного и переменного токов), независимость основных параметров от внешних дестабилизирующих факторов (изменение температуры, напряжения питания и др.). В основном используются интегральные усилители (ИОУ).

Присутствие в названии слова "операционные" объясняется возможностью выполнения данными усилителями ряда математических операций - суммирования, вычитания, дифференцирования, интегрирования и др.



Поделиться:


Последнее изменение этой страницы: 2021-05-12; просмотров: 129; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.12.161.77 (0.165 с.)