Чипсет: назначение и схема функционирования 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Чипсет: назначение и схема функционирования



ОСНОВНАЯ ЧАСТЬ

 

БИЛЕТ 1

1. История развития вычислительных машин. Классификация ЭВМ

2. Устройства ввода информации

 

БИЛЕТ 2

1. Принципы (архитектура) Фон Неймана

2. Устройства ввода и вывода информации

 

БИЛЕТ 3

1.История развития вычислительной техники

2.Виды принтеров

 

БИЛЕТ 4

1.Арифметико-логическое устройство: назначение и классификация

2.Основные компоненты ЭВМ

 

БИЛЕТ 5

1.Системная шина и ее параметры

2. Базовая система ввода/вывода (BIOS): назначение, функции, модификации

 

БИЛЕТ 6

1.Принцип работы динамической памяти

2.Структура процессора

 

БИЛЕТ 7

1.Системная плата: архитектура и основные разъемы

2.Последовательные и параллельные порты

 

БИЛЕТ 8

1.Центральные и внешние устройства ЭВМ, их характеристики

2.Архитектура системного блока

 

БИЛЕТ 9

1.Интерфейсная часть процессора: назначение и упрощенная функциональная схема

2.Основные модули памяти

 

БИЛЕТ 10

1. Характеристики шин ISA, EISA, PCI и AGP

2. Внешние интерфейсы компьютера

 

БИЛЕТ 11

1.Магистрально-модульный принцип построения компьютера

2.Логическая схема системной платы

БИЛЕТ 12

1.Кэш-память: назначение, структура, основные характеристики

2.Основные принципы построения ЭВМ

 

БИЛЕТ 13

Чипсет: назначение и схема функционирования

2.Статистическая память. Наращивание емкости памяти

 

БИЛЕТ 14

1. Периферийные устройства: накопители на ГМД, ЖМД, накопители информации на CD, DVD, флэш-памяти

2.Суперскалярность

 

БИЛЕТ 15

1.Устройства специальной памяти: ПЗУ, перепрограммируемая постоянная память, видеопамять

2.Маркировка процессора

 

БИЛЕТ 16

1.Принцип построения внутренней памяти

2.Принцип Фон Неймана

 

БИЛЕТ 17

1.Динамическая память – принцип работы

2.Основные компоненты ЭВМ

 

БИЛЕТ 18

1.Интерфейсы периферийных устройств

2.Системная шина и ее параметры

 

БИЛЕТ 19

1.Структура процессора

2.Матричные системы

 

БИЛЕТ 20

1.Назначение и характеристики вычислительных систем

2. Организация оперативной памяти. Адресное и ассоциативное ОЗУ

 


ОТВЕТЫ НА БИЛЕТЫ

БИЛЕТ 1

Устройства ввода информации

Современные компьютеры могу обрабатывать числовую, текстовую, графическую, звуковую и видеоинформацию.

Для ввода в компьютер звуковой информации применяются микрофоны; сканеры, цифровые фотоаппараты и видеокамеры используются для ввода сложных графических изображений, фотографий и видеофильмов; числовая и текстовая информация также может быть введена в память компьютера с помощью сканера. Но для того чтобы успешно работать на компьютере, необходимо знать клавиатуру – важнейшее устройство ввода в память компьютера.

Клавиатура

Клавиатура — компьютерное устройство ввода, которое служит для набора текстов и управления компьютером с помощью клавиш, находящихся на клавиатуре.

Принцип работы

Клавиши клавиатуры подключены к матрице контактов. Каждой клавише или комбинации клавиш присвоен свой номер (код). Внутри клавиатуры находится отдельный микропроцессор. Каждое нажатие на клавишу замыкает контакт. При этом в соответствии с матрицей контактов микропроцессор генерирует код нажатой клавиши. Этот код запоминается в специальной области (буфере микропроцессора) и становится доступным для обработки программными средствами.

Виды клавиатур

Одни клавиатуры при нажатии на клавишу издают механический щелчок, другие — молчат. Программная поддержка

Работа любого аппаратного средства требует программного управления. Для устройств ввода (устройств вывода) управляющие программы называются ДРАЙВЕРАМИ.

Практически все выпускаемые сейчас периферийные устройства соответствуют стандарту Plug and Play (подключи и работай), позволяющему автоматически настроить устройство входе диалога с компьютером в процессе начальной загрузки.

Драйвер клавиатуры, как правило, поставляется вместе с операционной системой. Эта программа позволяет пользователю выбрать алфавит, осуществить раскладку клавиш.

Курсор — специальный значок на экране дисплея (чёрточка, стрелка, подсвеченный прямоугольник, крестик и пр.), который отмечает место, где появится символ, введённый с клавиатуры, или обозначение команды (программы, документа), которую надо выполнить.

Группы клавиш

Все клавиши можно условно разделить на несколько групп:

1. алфавитно-цифровые клавиши;

2. функциональные клавиши;

3. управляющие клавиши;

4. клавиши управления курсором;

5. цифровые клавиши.

В центре расположены алфавитно-цифровые клавиши, очень похожие на клавиши обычной пишущей машинки. На них нанесены цифры, специальные символы («!», «:», «*» и т.д.), буквы русского алфавита, латинские буквы. С помощью этих клавиш вы будете набирать всевозможные тексты, арифметические выражения, записывать свои программы. В нижней части клавиатуры находится большая клавиша без символов на ней – «Пробел». «Пробел» используется для отделения слов и выражений друг от друга.

Русские клавиатуры двуязычные, поэтому на их клавишах нарисованы символы как русского, так и английского алфавитов. В режиме русского языка набираются тексты на русском языке, английского — на английском.

Алфавитно-цифровая клавиатура — основная часть клавиатуры с алфавитно-цифровыми клавишами, на которых нарисованы символы, вместе со всеми тесно прилегающими управляющими клавишами.

Алфавитно-цифровые клавиши (клавиши пишущей машинки занимают центральную часть клавиатуры. На левой стороне клавиш нарисованы символы, которые набираются в режиме английского языка. На правой — символы режима русского языка.

Функциональные клавиши F1 – F12, размещенные в верхней части клавиатуры, запрограммированы на выполнение определенных действий (функций). Так, очень часто клавиша F1 служит для вызова справки.

Для перемещения курсора служат клавиши управления курсором, на них изображены стрелки, направленные вверх, вниз, влево и вправо. Эти клавиши перемещают курсор на одну позицию в соответствующем направлении. Клавиши PageUp и PageDown позволяют «листать» документ вверх и вниз, а клавиши Home и End переводят курсор в начало и конец строки.

Очень часто используются управляющие (служебные) клавиши. Они не собраны в одну группу, а размещены так, чтобы их было удобно нажимать.

Клавиша Enter (иногда изображается со стрелкой) завершает ввод команды и вызывает ее выполнение. При наборе текста служит для завершения ввода абзаца.

Клавиша Esc расположена в верхнем углу клавиатуры. Обычно служит для отказа от только что выполненного действия.

Клавиши Shift, Ctrl, Alt корректируют действия других клавиш.

Цифровые клавиши – при включенном индикаторе Num Lock удобная клавишная панель с цифрами и знаками арифметических операций. Расположенными, как на калькуляторе. Если индикатор Num Lock выключен, то работает режим управления курсором.

Клавиатура – это электронное устройство, содержащее внутри микросхемы и другие детали. Поэтому обращаться с ней следует бережно и аккуратно. Нельзя допускать загрязнения клавиатуры пылью, мелким мусором, металлическими скрепками пр. Нет нужды сильно стучать по клавишам. Движения пальцев должны быть легкими, короткими и отрывистыми.

Сканер

Принцип работы

Лампа освещает сканируемый текст, отражённые лучи попадают на фотоэлемент, состоящий из множества светочувствительных ячеек. Каждая из них под действием света приобретает электрический заряд. Аналого-цифровой преобразователь ставит в соответствие каждой ячейке числовое значение, и эти данные передаются в компьютер.

Виды сканеров

Сканеры бывают ручные, портативно-страничные, планшетно-офисные, сетевые (скоростные), широкоформатные; они могут быть чёрно-белые (до 64 оттенков серого) и цветные (256 - 16 млн. цветов).

Ручные сканеры внешне напоминают «мышь» большого размера, которую пользователь двигает по сканируемому изображению. Однако ручное перемещение устройства по бумаге, небольшой размер охватываемой области сканирования не обеспечивают достаточной скорости и требуют тщательной состыковки отдельных участков изображения.

К настольным сканерам относятся планшетные, роликовые (портативно-страничные), барабанные и проекционные сканеры.

Основной отличительный признак планшетного сканера — сканирующая головка перемещается относительно неподвижной бумаги. Они просты и удобны в эксплуатации, позволяют сканировать изображения как с отдельных листов, так и с книг, журналов.

У портативно-страничных сканеров бумага перемещается относительно сканирующей головки. Они довольно компактны, но отсканировать с их помощью рисунок из книги вряд ли получится. Этот тип сканеров используется для ввода страниц документов форматом от визитной карточки до А4, система автоматической подачи бумаги обеспечивает равномерное сканирование по всей ширине листа.

Основные пользовательские характеристики:

разрешающая способность (оптическое разрешение), то есть количество распознаваемых точек (пикселей) на дюйм (измеряется в ppi — pixels per inch);

скорость сканирования — показатель быстродействия, который равен времени, затрачиваемому на обработку одной строки изображения;

размеры сканируемого листа (область сканирования);

разрядность битового представления — определяет максимальное число цветов или оттенков серого, которые может воспринимать сканер.

Манипулятор мышь

Принцип работы

Мышь — небольшая коробочка с кнопками. В ней — шарик, катающийся по поверхности стола. К шарику прижаты два взаимно перпендикулярных ролика, которые он вращает. Датчики поворота ролика передают сигналы в компьютер. «Хвост» из проводов, по которым идут сигналы, дал устройству имя «мышь». Курсор мыши управляется перемещением мыши по столу. Управляющая информация вводится нажатием на кнопки мыши.

Программная поддержка

Драйвер мыши поставляется вместе с устройством. Современные операционные системы содержат драйверы для большинства манипуляторов этого типа и автоматически при включении компьютера подбирают наиболее подходящий из них.

Джойстик

Джойстик— (англ. Joystick = Joy + Stick) — устройство управления в компьютерных играх.

Представляет собой рычаг на подставке, который можно отклонять в двух плоскостях. На рычаге могут быть разного рода гашетки и переключатели. Также словом «джойстик» в обиходе называют рычажок управления, например, в мобильном телефоне.

В русском языке ручку управления промышленными механизмами и транспортными средствами (самолётом и т. д.) джойстиком не называют никогда (в отличие от английского joystick).

Световое перо

Дигитайзер

Дигитайзер (со световым пером) или графический планшет (от англ. digitizer) - это устройство для ввода рисунков от руки непосредственно в компьютер.

Состоит из пера и плоского планшета, чувствительного к нажатию или близости пера.

Тачпад

Тачпад (англ. touchpad — сенсорная площадка), сенсорная панель — указательное устройство ввода, применяемое, чаще всего, в ноутбуках.

Принцип работы.

Работа тачпадов основана на измерении ёмкости пальца или измерении ёмкости между сенсорами. Ёмкостные сенсоры расположены вдоль вертикальной и горизонтальной осей тачпада, что позволяет определить положение пальца с нужной точностью.

Поскольку работа устройства основана на измерении ёмкости, тачпад не будет работать, если водить по нему каким-либо непроводящим предметом, например, основанием карандаша. В случае использования проводящих предметов тачпад будет работать только при достаточной площади соприкосновения. (Попробуйте касаться тачпада пальцем лишь чуть-чуть). Влажные пальцы затрудняют работу тачпада.

Трекпойнт

Сенсорный экран

Принцип работы.

Сенсорный экран представляет собой стеклянную конструкцию, размещаемую на поверхности дисплея, отображающего систему навигации. Выбор необходимой функции системы происходит при прикосновении к соответствующему изображению на экране. Контроллер сенсорного экрана обрабатывает координаты точки прикосновения и передает их в компьютер. Специальное программное обеспечение запускает выбранную функцию.

 

БИЛЕТ 2

1. Принципы (архитектура) Фон Неймана

Большинство современных ЭВМ функционируют на основе принципов, сформулированных в 1945 году американским ученым венгерского происхождения Джоном фон Нейманом:

1. Принцип двоичного кодирования. Согласно этому принципу, вся информация, поступающая в ЭВМ, кодируется с помощью двоичных символов (сигналов).

2. Принцип программного управления. Компьютерная программа состоит из набора команд, которые выполняются процессором автоматически друг за другом в определенной последовательности.

3. Принцип однородности памяти. Программы и данные хранятся в одной и той же памяти. Поэтому ЭВМ не различает, что хранится в данной ячейке памяти - число, текст или команда. Над командами можно выполнять такие же действия, как и над данными.

4. Принцип адресности. Структурно основная память состоит из пронумерованных ячеек, любая из которых которая доступна процессору в произвольный момент времени.

Согласно фон Нейману, ЭВМ состоит из следующих основных блоков (рис 2.1): 1) устройства ввода/вывода информации; 2) памяти ЭВМ; 3) процессора, включающего устройство управления (УУ) и арифметико-логическое устройство (АЛУ)

В ходе работы ЭВМ информация через устройства ввода попадает в память. Процессор извлекает из памяти обрабатываемую информацию, работает с ней и помещает в нее результаты обработки. Полученные результаты через устройства вывода сообщаются человеку.

Память ЭВМ состоит из двух видов памяти: внутренняя (оперативная) и внешняя (долговременная) память.

Оперативная память – это электронное устройство, которое хранит информацию, пока питается электроэнергией.

Внешняя память – это различные магнитные носители (ленты, диски), оптические диски.

За прошедшие десятилетия процесс совершенствования ЭВМ шел в рамках приведенной обобщенной структуры.

 

БИЛЕТ 3

Виды принтеров

Виды принтеров по типу устройства:

  • Обычные принтеры.
  • МФУ – многофункциональные устройства. С помощью МФУ вы сможете не только печатать документы, но и сканировать и принимать факсы.
  • Портативные принтеры – принтеры, которые обладают компактными размерами и могут работать от встроенного аккумулятора.
  • Фотопринтереры – принтеры, предназначенные для печати фотографий. Для работы таким принтерам нужна специальная фотобумага и чернила.

БИЛЕТ 4

Узлы хранения АЛУ

К этой категории относятся:

· триггеры, хранящие вспомогательные биты и разные признаки результатов;

· регистры, отвечающие за целостность операндов, промежуточных и конечных итогов.

Иногда регистры арифметико-логического устройства могут объединяться в специализированный блок памяти, а триггеры - формировать единый регистр состояния.

Узлы передачи АЛУ

К этой категории относятся:

· шины, соединяющие между собой блоки устройства;

· мультиплексоры и вентили, отвечающие за выбор правильного направления выполнения операций.

Узлы преобразования АЛУ

Сюда относятся:

· сумматоры, выполняющие микрооперации;

· схемы выполнения логических действий;

· сдвигатели;

· корректоры для десятичной арифметики;

· преобразователи кода, использующиеся для получения обратных или дополнительных данных;

· счетчики для подсчета количества выполненных циклов и для реализации вспомогательных преобразований.

Узлы управления АЛУ

К этой категории объектов относятся:

· контрольный блок;

· дешифратор сигналов;

· схемы преобразования логических признаков, необходимые для формирования ветвей для выполнения микропрограмм.

Классификация АЛУ

Арифметико-логические устройства по способу оперирования переменными делят на параллельные и последовательные. Главное отличие между этими АЛУ заключается в способе представления операндов и выполнения операций.

 По характеру использования арифметико-логические устройства делят на многофункциональные и блочные. В АЛУ первого типа для выполнения операций с различными формами преставления чисел используются одни и те же схемы, которые приспосабливаются к затребованному режиму работы с данными. В блочных устройствах все операции выполняются через распределение по видам данных. Для действий с десятичными числами, цифровыми и алфавитными полями, цифрами с плавающей или фиксированной точкой используются различные схемы. При этом арифметико-логическое устройство работает намного быстрее благодаря параллельному выполнению заданных задач. Но у них есть и недостаток – увеличенные затраты на поддержку оборудования.

Арифметико-логическое устройство по способу представления может использоваться для:

· десятичных чисел;

· чисел с плавающей точкой;

· чисел с фиксированной точкой.

Операции устройства

Структура АЛУ предполагает выполнение действий через логические функции, которые делятся на такие группы:

· десятичная арифметика;

· двоичная арифметика для цифр с четко обозначенной точкой;

· шестнадцатеричная арифметика для выражений с плавающим разделителем;

· модификация адресов команд;

· операции логического типа;

· преобразование алфавитно-цифровых полей;

· специальная арифметика.

Современные электронно-вычислительные машины способны реализовать все вышеупомянутые типы активности, а микроЭВМ не имеют такого базового функционала, поэтому наиболее сложные процедуры выполняют через подключение небольших подпрограмм.

Основные компоненты ЭВМ

Компоненты ЭВМ можно разделить на 4 основные категории: процессор, оперативная па­мять, внешняя память и прочие внешние устройства. Последние позволяют компьютеру обмениваться информацией с человеком и другими компьютерами, управлять технологическими процессами и т. д.

Главная компонента компьютера — процессор. Процессор обеспечивает обработку данных, переда­чу данных, управление различными устройствами. Процессор имеет собственный достаточно сложный «язык» и может выполнять фиксированный набор действий-команд. Последовательность команд, записанная на языке процессора и переданная ему для исполнения, называется машинной программой. Процессор имеет свою сверхбыструю память, кото­рая называется регистрами процессора.

Минимальный элемент памяти (бит) способен

хранить минимально возможный объем

информации — одну двоичную цифру. Биты в памяти любого вида объединяются в байты — восьмерки битов. Принято для именования байтов использовать неотрицательные целые числа и говорить о номерах или адресах байтов.

Процессор мол-сет прочитать нечто из байта памяти с адресом /V или записать нечто в этот байт. Для этого от процессора к памяти должен поступить адрес байта, а сам байт информации должен быть передан от процессора к памяти (при записи) или от памяти к процессору (при чтении). Эта информация передается по проводам. Провода разделены на два пучка, называемые шинами.

Одна часть проводов называется шина адреса, другая — шина данных. Адрес байта передается по шине адреса, а байт — по шине данных.

Число проводов в шине данных называется раз­рядностью шины. Обычно разрядность равна 8, 16, 32 или 64.

 

БИЛЕТ 5

БИЛЕТ 6

Структура процессора

БИЛЕТ 7

LPX

LPX – форм фактор материнской платы с размером 9х11-13″ (229х279-330 мм), разработан Western Digital в 1987 году. Предназначался для использования в корпусах Slimline или Low-profile. Платы расширения устанавливались параллельно системной плате, посредством переходника с повернутыми на 90° разъемами. Это позволило заметно уменьшить высоту корпуса, поскольку обычно именно высота карт расширения влияет на этот параметр. Расплатой за компактность стало максимальное количество подключаемых карт не более 3 штук. Ещё одно нововведением был интегрированный в материнскую плату видеочип. Платформы форм-фактора

Размеры плат форм-фактора ITX:

• LPX – 22,9 × 27,9-33,0см

• Mini-ITX – 20,3-22,9 × 25,4-27,9 см

Схема системной платы форм фактора LPX

LPX широкого распространения не получили и после появления NLX, LPX начал вытесняться этим форм-фактором.

NLX

Конструкция NLX предложена в ноябре 1996 года компанией Intel и разработана совместно с IBM, DEC и другими производителями системных плат с низким профилем. Версия 1.2 была выполнена в марте 1997 году. В апреле 1998 появилась версия 1.8. Форм фактор NLX стал использоваться в корпоративных системах Slimline таких компаний, как Compaq, HP, Toshiba и др. Корпорация Intel продвигала форм-фактор NLX как базу для построения компактных компьютеров.

Системная плата согласно этой спецификации разделена на две части. В специальный разъем (получивший название NLX Riser Connector), непосредственно примыкающий к блоку питания, вставляется процессорная плата (содержит процессор, BIOS, слоты для модулей оперативной памяти). Кроме контактов питания разъем имеет информационную (системную) шину. Другая плата (названная Riser card) установлена в корпусе компьютера стационарно (то есть является частью компьютерной системы) и может иметь слоты интерфейсов PCI, USB, IEEE1394 и любых других имеющихся и перспективных стандартов. Таким образом, после установки процессорная плата автоматически оказывается подключенной к питанию и к шинам интерфейсов.

Многочисленные усовершенствования, отличающие форм фактор NLX от конструкции LPX, позволяют в полной мере использовать самые последние технологии в области системных плат. NLX — это улучшенная и, что самое главное, полностью стандартизированная версия независимой конструкции LPX, т.е. одну плату NLX можно заменить платой другого поставщика, что было невозможным для плат форм-фактора LPX. Применение системных плат LPX ограничено физическими размерами современных процессоров и соответствующих им теплоотводов, а также новыми типами шин (например, AGP).

Эти проблемы были учтены при разработке форм-фактора NLX (Конструкция системной платы NLX также позволял разместить сдвоенный процессор Pentium III, установленный в разъемы Slot 1.

Начиная с 2000 года в большинстве систем Slimline применяются различные модели системных плат ATX.

ATX

Форм фактор ATX разработан и предложен производителям компьютерных систем в компанией Intel и предназначался для замены использовавшегося долгое время стандарта AT. Официально спецификация ATX была опубликована фирмой Intel в июле 1995 года. Такой открытой публикацией Intel создала новый промышленный стандарт, который позволял производство системных плат другим производителям материнских плат (HP и т. д.).

В ATX сочетаются наилучшие черты стандартов Baby-AT и LPX и заложены многие дополнительные усовершенствования. По существу, ATX – это “лежащая на боку” плата Baby-AT с измененным разъемом и местоположением источника питания. Конструкция ATX физически несовместима ни с Baby-AT, ни с LPX и поэтому для системной платы ATX нужен особый корпус и источник питания.

Конструкция ATX позволила усовершенствовать стандарты Baby-AT и LPX:

•Наличие встроенной двойной панели разъемов ввода-вывода. На тыльной стороне системной платы есть область с разъемами ввода-вывода шириной 6,25 и высотой 1,75 дюйма. Это позволяет расположить внешние разъемы непосредственно на плате и исключает необходимость использования кабелей, соединяющих внутренние разъемы и заднюю панель корпуса, как в конструкции Baby-AT.

•Наличие одноключевого внутреннего разъема источника питания. Это упрощает замену разъемов на источнике питания типа Baby-AT. Спецификация ATX содержит одноключевой разъем источника питания, который легко вставляется и который невозможно установить неправильно. Этот разъем имеет контакты для подвода к системной плате напряжения 3,3 В, а это означает, что для системной платы ATX не нужны встроенные преобразователи напряжения, которые часто выходят из строя.

•Перемещение процессора и модулей памяти. Изменены места расположения этих устройств: теперь они не мешают платам расширения, и их легко заменить новыми, не вынимая при этом ни одного из установленных адаптеров. Процессор и модули памяти расположены рядом с источником питания и обдуваются одним вентилятором, что позволяет обойтись без специального вентилятора для процессора, который не всегда эффективен и часто склонен к поломкам. Есть также место и для большого пассивного теплоотвода.

•Более удачное расположение внутренних разъемов ввода-вывода. Эти разъемы для накопителей на гибких и жестких дисках смещены и находятся не под разъемами расширения или самими накопителями, а рядом с ними. Поэтому можно уменьшить длину внутренних кабелей к накопителям, а для доступа к разъемам не нужно убирать одну из плат или накопитель.

•Улучшение охлаждения. Процессор и модули памяти охлаждаются тем же вентилятором, что и источник питания. Кроме того, в конструкции ATX вентилятор источника питания направляет поток воздуха внутрь корпуса, увеличивая в нем давление и препятствуя проникновению пыли и грязи. Вы можете установить фильтр и сделать компьютер еще более защищенным.

•Снижение стоимости. Конструкция ATX не требует наличия гнезд кабелей к разъемам внешних портов, встречающихся на системных платах Baby-AT, дополнительного вентилятора для процессора и 3,3-вольтного стабилизатора на системной плате. В этой конструкции используется один-единственный разъем питания. Кроме того, вы можете укоротить внутренние кабели дисковых накопителей. Все это существенно уменьшает стоимость не только системной платы, но и всего компьютера, включая корпус и источник питания.

Отличительные черты ATX:

• все разъемы плат расширения подключены непосредственно к системной плате (нет никаких выносных плат, как у LPX или NLX).

• разъемы перпендикулярны к плоскости системной платы.

• имеют уникальную платформу удвоенной высоты для всех встроенных разъемов на системной плате.

ATX определяет следующие характеристики:

• геометрические размеры материнских плат,

• общие требования по положению разъёмов и отверстий на корпусе,

• положение блока питания в корпусе,

• геометрические размеры блока питания,

• электрические характеристики блока питания,

• форму и положение ряда разъёмов (преимущественно питания).

Сегодня стандарт ATX выпускается в нескольких вариациях, которые отличаются друг от друга не только габаритами, но и содержимым.

Размеры плат форм-фактора:

• АТХ(полноразмерная) — 30,5 × 24,4 см

• MicroATX(декабрь 1997)- 24,4 × 24,4 см

• FlexATX(март 1999г.) – 22,9 x 19,1см

• MiniATX- 15 x 15см

 

Массовая замена использования стандарта AT стандартом ATX произошла в конце 1999 — начале 2001 года. По состоянию на 2011 год, форм-фактор ATX и его производные остаётся наиболее массовым и в ближайшее время его замена не планируется.

За время существования спецификация претерпела ряд изменений, выразившихся в стандартах:

• ATX 1.0 Standard.

• ATX 1.1 Standard.

• ATX 1.2 Standard.

• ATX 1.3 Standard.

• ATX 2.0 Standard.

• ATX 2.1 Standard.

• ATX 2.2 Standard.

• ATX 2.3 Standard.

BTX

Официальное представление спецификации The Balanced Technology Extended (ВТХ) 1.0 Public Release состоялось в июле 2004 г. Предполагалось, что BTX придёт на смену форм-фактору ATX. Форм фактор BTX предназначался для «сверх горячих» процессоров, с тепловой мощностью более 100 Вт.

Назначение ВТХ официально сформулировано следующим образом: спецификации разработаны с целью стандартизации интерфейсов и определения форм-факторов для настольных вычислительных систем в области их электрических, механических и термических свойств. Спецификации описывают механические и электрические интерфейсы для разработки системных плат, шасси, блоков питания и других системных компонентов.

Главные преимущества форм-фактора ВТХ перед АТХ:

• возможность применения низкопрофильных компонентов для сборки миниатюрных систем;

• продуманное размещение элементов системы внутри корпуса с учетом путей прохождения потоков воздуха и термобаланса;

• масштабируемость в рамках доступных модификаций — полно-форматного ВТХ, microBTX, picoBTX;

• возможность использования небольших блоков питания;

• оптимизированная конструкция крепления системной платы, качественные механические элементы для установки массивных компонентов.

Размеры плат форм-фактора BTX:

• BТХ(2004г.) – 32,5 × 26,7 см

• MicroBTX(2004г.) – 26,4 × 26,7 см

• PicoBTX (2004г.) – 20,3 × 2,67 см

Увеличивающееся тепловыделение процессоров Pentium 4, которое было главной причиной создания BTX, вынудило корпорацию Intel перейти к другим путям наращивания мощности. Следующее поколение процессоров (Intel Core) уже было гораздо более энергоэффективным и «холодным». Таким образом, главное преимущество BTX стало несущественным, и появились сомнения в целесообразности его дальнейшей поддержки. В сентябре 2006 года Intel отказалась от поддержки стандарта BTX.

WTX

Форм-фактор систем и системных плат WTX разрабатывался для рабочих станций среднего уровня. WTX по своим параметрам ненамного отставал от ATX и определял размер/формусистемной платы, а также интерфейс платы и корпуса, разработанный в соответствии с особенностями форм-фактора.

Форм-фактор WTX версии 1.0 был представлен в сентябре 1998 года, а в феврале 1999 года появилась его следующая версия (1.1). Некоторые из представленных систем форм-фактора WTX разрабатывались в качестве серверов.

Системные платы WTX имеют размеры 35,56 × 42,54 см, что гораздо больше плат ATX. Минимальные размеры платы не ограничены, что позволяет производителям уменьшать размеры плат в соответствии с монтажными критериями.

Официальные требования по установке и расположению системной платы WTX не определены, что позволяет обеспечить необходимую гибкость конструкции. Точное расположение и размер крепежных отверстий также не указывается; вместо этого системная плата WTX устанавливается на стандартной монтажной плате, которая должна быть поставлена в комплекте с системной платой. Конструкция корпуса WTX позволяет установить монтажную плату с присоединенной к ней системной платой.

ITX

Подразделение Platform Solutions компании VIA Technologies поставило задачу создать системную плату с минимальными размерами (насколько возможно), причем не придумывая для этого нового, не совместимого с уже существующими форм-фактора.

В 2001 году эта задача была выполнена. Новая плата приобрела название ITX, однако уменьшение размеров всего на 6% оказалось недостаточным для промышленного производства, поэтому платы форм-фактора ITX так и не увидели свет. Материнские платы разрабатывались для процессора Cyrix и были существенно меньше по размеру наименьшего форм фактора flexATX на тот период.

Системные платы mini-ITX обладают большинством необходимых портов вода/вывода. Тем не менее между платами miniITX и другими моделями ATX существует ряд различий:

• Процессор в плате mini-ITX обычно припаян к гнезду, что делает невозможным обновление или замену процессора.

• В большинстве корпусов mini_ITX установлены блоки питания TFX, которые поставляются лишь несколькими компаниями, а значит, замена такого блока питания обойдется недешево.

• Доступные на рынке блоки питания TFX имеют небольшую выходную мощность, какправило до 240 Ватт.

• Встроенный графический адаптер нельзя заменить платой AGP.

В апреле 2005 года компания VIA представила плату c еще меньшими габаритами, которая характеризовалась минимальными глубиной и шириной, допустимыми в рамках стандарта flex-ATX. Новый форм-фактор назывался nano-ITX.

В январе 2007 г. компания VIA представила первую материнскую плату стандарта Pico-ITX. Эти платы изготавливаются для сверхкомпактных компьютерных систем невысокой производительности. На ней устанавливается процессор VIA C7 с тактовой частотой в 1 ГГц, чипсеты CX700M/VX700 с интегрированным графическим ядром, память DDR2 SO-DIMM. Плата обладает четырьмя разъёмами USB, одним контроллером Ethernet иконтроллером SATA-2. Кроме того, производителям удалось разместить на плате звуковую карту VIA VT1708A (7.1 HDA и S/PDIF) и универсальный картридер.

В настоящее время материнские платы Pico-ITX разработаны также и для процессора Intel Atom.

Размеры плат форм-фактора ITX:

• Mini-ITX – 17,0 × 17,0 см

• Nano-ITX – 12,0 × 12,0 см

• Pico-ITX – 10,0 × 7,2 см

В настоящее время этот форм фактор претерпевает сложные времена, в связи с появлением аналогичных габаритов от BTX и ATX

Рисунок 16. Системная плата форм фактора ITX

Поскольку платы и корпуса mini-ITX предоставляются небольшим количеством компаний, возможности модернизации или замены системных компонентов существенно ограниченны. Тем не менее, так как платы mini-ITX соответствуют стандарту flex-ATX, их можно устанавливать в любых корпусах форм-факторов flex-ATX, micro-ATX или полноразмерных ATX и применять вмонтированные в корпуса блоки питания. В свою очередь, в большинство корпусов mini-ITX нельзя установить платы flex-ATX, micro-ATX или ATX; кроме того, в таких корпусах, как правило, имеется блок питания TFX. Остановив свой выбор на системе mini-ITX, необходимо подобрать подходящий тип процессора, обладающий достаточным быстро действием, ведь замена или модернизация процессора практически всегда будет означать замену системной платы.

CEB

СEB (от англ. Compact Electronics Bay) форм фактор серверных материнских плат. Габариты 305мм x 267мм. Стандарт разработан в 2005 году совместно корпорациями Intel, DELL, IBM и Silicon Graphics, Inc. в рамках SSI(Server System Infrastructure) Forum.

Спецификация CEB предназначена для определения основного дизайна форм-фактора серверов и рабочих станций. Она также предоставляет дизайн-решения температурного управления и ограничения электромагнитной интерференции. Спецификация определяет следующие свойства:

• Максимальный размер платы и расположение монтажных отверстий;

• Разводку разъёмов питания и сигнальных коннекторов;

• Размеры и расположение панели портов ввода/вывода;

• Требования для монтажа платы/процессора.

Спецификация CEB развилась из спецификаций EEB(англ. Entry-level Electronics Bay) и ATX (форм-фактор) и решает следующие задачи:

• Поддержка двухпроцессорных решений для современных и будущих процессоров, чипсетов и стандартов модулей памяти;

• Определения разъёмов питания оптимизированых для высоковольтных и совместимых с Electronics Bay источников питания;

• Определение ограничений объёма и стратегии движения воздушных потоков, которое упрощает дизайн корпуса, устраняет проблемы взаимного влияния компонентов и помогает в обеспечении надлежащего охлаждения;

• Увеличение взаимозаменяемости плат и корпусов для уменьшения времени вывода нового изделия на рынок;

• Уменьшения стоимости материалов, производства и разработки;

• Гибкость серийного производства, позволяющая интеграторам разграничивать и добавлять компоненты в стоечные и башенные форм-факторы.

За время существования спецификация претерпела ряд изменений, выразившихся в стандартах:

• CEB 1.0



Поделиться:


Последнее изменение этой страницы: 2021-05-12; просмотров: 196; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.133.131.168 (0.21 с.)