Устойчивость растений к инфекционным болезням 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Устойчивость растений к инфекционным болезням

Поиск

 

Помимо устойчивости к рассмотренным выше факторам внешней среды, растения должны обладать защитой от огромного числа биотических факторов и прежде всего от микроорганизмов - потенциальных патогенов, которыми окружено растение в течение онтогенеза. У дикорастущих форм в результате длительной сопряженной эволюции с другими организмами вырабатывались разнообразные защитные механизмы, которые не всегда представлены у культурных растений. Поэтому выяснение естественных механизмов устойчивости, помимо общенаучного значения, важно и для определения способов борьбы с болезнями сельскохозяйственных растений.

Устойчивость к болезни есть способность растения предотвращать, ограничивать или задерживать ее развитие. Устойчивость может быть неспецифической, или видовой, и специфической, или сортовой.

Видовая устойчивость защищает растения от огромного количества сапрофитных микроорганизмов. Этот тип устойчивости предлагается также называть фитоиммунитетом (от лат. immunitas - освобождение от чего-либо), поскольку видовая устойчивость касается болезней неинфекционных для данного вида растений. Благодаря видовой устойчивости каждый вид растений поражается лишь немногими возбудителями. Специфическая устойчивость имеет отношение к паразитам, способным преодолевать видовую устойчивость растения и поражать растение в той или иной степени. Эта устойчивость очень важна для культурных растений, так как именно специфические патогены обусловливают более 90% потерь от болезней сельскохозяйственных культур.

Инфекционные болезни растений вызываются паразитическими грибами и бактериями, вирусами, растительными почвенными нематодами (фитогельминты), паразитическими цветковыми растениями (повилика, заразиха, омела). Фитогельминты и растения-паразиты могут быть переносчиками вирусов. Наибольшие потери урожаев вызывают грибные заболевания, несколько меньшие - вирусные и бактериальные. Это связано со значительно большим числом видов грибов-патогенов (более 10000 видов) по сравнению с бактериями, поражающими растения (150 - 200 видов).

Характеристика возбудителей болезней. Различают следующие группы патогенов:

1. Факультативные (необязательные) паразиты, которые, являясь сапрофитами, живут на мертвых остатках растений, но могут поражать и живые, но ослабленные растения. Эти патогены легко культивируются на питательных средах и поражают растения многих видов и таксономических групп. Типичный пример паразитов этой группы - возбудитель серой гнили.

2. Факультативные сапрофиты ведут в основном паразитический образ жизни на небольшом числе видов и реже - сапрофитный. К ним относится, например, - возбудитель фитофтороза картофеля.

3. Облигатные (обязательные) паразиты не могут существовать без растения-хозяина одного или близких родов. К облигатным паразитам относятся все вирусы, многие грибы-паразиты растений (например, - возбудитель бурой ржавчины пшениц), но не бактерии. В процессе сопряженной эволюции с растениями-хозяевами паразиты этого типа выработали способность проникать в ткани растения-хозяина, минуя его защитные механизмы.

По характеру питания эти же типы паразитов делят на некротрофов и биотрофов. Некротрофы (все факультативные паразиты и некоторые факультативные сапрофиты) поселяются на предварительно убитой ими ткани. Клетки растения-хозяина погибают под действием токсинов, выделяемых патогеном, а затем содержимое клеток расщепляется внеклеточными гидролитическими ферментами, также выделяемыми паразитом.

Биотрофы (облигатные паразиты) определенное время сосуществуют с живыми клетками растения-хозяина. Они проникают туда, минуя системы защиты растения и не выделяя токсинов, вредных для него. Часто гриб-биотроф обитает в межклетниках, а питательные вещества получает с помощью гаусторий-присосок, врастающих в клетку. Такое сосуществование продолжается до спороношения гриба, после чего растение начинает повреждаться.

Патогены воздействуют на растение-хозяина с помощью выделяемых гидролитических ферментов и токсинов. Ферменты растворяют компоненты клеточных стенок и срединные пластинки, облегчая тем самым внедрение паразита в ткани растения-хозяина и одновременно обеспечивая его питанием. Токсины, выделяемые некротрофами и убивающие ткани растения, называют фитотоксинами. Они не обладают специфичностью и способны повреждать многие растения. Вивотоксины выделяются патогеном в среду, если он является сапрофитом, и в ткани растения - при паразитической форме его существования. Эти токсины сами по себе могут индуцировать ряд симптомов болезни. Но наиболее полно симптомы болезни (без патогена) вызываются токсинами паразита, заражающего данный вид, т.е. специфичными к данному растению-хозяину (патотоксинами).

Функцию патотоксинов выполняют различные соединения - олигопептиды, терпеноиды, гликозиды. Они действуют на восприимчивые растения в очень низких концентрациях. Например, фильтрат культуральной жидкости подавлял рост корней восприимчивого сорта овса в концентрации 1: 1200000, а устойчивый сорт повреждается лишь при концентрациях, в 400 000 раз больших.

Паразитические организмы характеризуются свойствами патогенности, вирулентности и агрессивности. Под патогенностью понимают способность микроорганизмов вызывать заболевания. Качественную сторону патогенности отражает вирулентность, обозначающая способность патогена поражать или не поражать растение (по принципу "да-нет"). Она присуща только патогенным видам, которые различаются по способности поражать разных растений-хозяев и могут иметь несколько форм, паразитирующих на различных растениях одного рода. Например, Puccinia graminis паразитирует на пшенице, овсе, рисе и других злаках. Вирулентность патогена изменяется только в результате модификаций генома и почти не зависит от условий внешней среды.

Агрессивность патогенов выражает степень поражения ими восприимчивых растений и определяется скоростью роста паразита, факторами внешней среды и др. Вирулентность и агрессивность отражают качественную и количественную характеристику патогенности паразита по отношению к растению-хозяину.

Механизмы защиты. Устойчивость растений к болезням основана на разнообразных механизмах защиты. В целом эти механизмы подразделяют на:

) конституционные, т. /е. присутствующие в тканях растения-хозяина до инфекции, и 2) индуцированные, или возникшие в ответ на контакт с паразитом или его внеклеточными выделениями.

Конституционные механизмы включают в себя: а) особенности структуры тканей, обеспечивающие механический барьер для проникновения инфекции; б) способность к выделению веществ с антибиотической активностью (например, фитонцидов); в) создание в тканях недостатка веществ, жизненно важных для роста и развития паразита.

Индуцированные механизмы устойчивости характеризуются реакцией растения-хозяина на инфекцию: а) во всех случаях усиливаются дыхание и энергетический обмен растения, б) накапливаются вещества, обеспечивающие общую неспецифическую устойчивость (фитонциды, фенолы и продукты их окисления - хиноны, таннины и др.), в) создаются дополнительные защитные механические барьеры, г) возникает реакция сверхчувствительности, д) синтезируются фитоалексины. Общая стратегия защиты растения состоит в том, чтобы не допустить воздействия паразита на свои клетки или локализовать инфекцию и привести патогена к гибели.

При этом реакции растения на поражение некротрофами и биотрофами будут неодинаковыми. Защитой против токсинов и экзоферментов некротрофа служит дезактивация их в клетках растения. Устойчивость к биотрофам создается с помощью механизмов распознавания паразита, включения реакции сверхчувствительности для образования зоны некроза, лишающей патогена жизненно необходимых компонентов питания, и последующего уничтожения его в этой зоне с участием! синтезированных в ответ на инфекцию фитоалексинов.

Устойчивость к некротрофам обеспечивают следующие механизмы:

) детоксикация токсинов паразита (например, викторина - токсина возбудителя гельминтоспориоза овса устойчивыми растениями овса, райграса и сорго);

) потеря устойчивыми растениями чувствительности к специализированным патотоксинам;

) связывание токсина у восприимчивых растений с рецептором в плазмалемме хозяина, в результате чего наступает гибель клетки;

) инактивация экзоферментов неспецифическими ингибиторами типа фенолов;

) задержка синтеза экзоферментон паразита устранением (маскировкой) их субстратов (например, синтез пектиназы и пектинметилэстеразы, осуществляемый некротрофами лишь в присутствии субстрата - пектиновых веществ, при поражении не происходит из-за усиления суберинизации и лигнификации клеточных стенок растения - хозяина в месте поражения, что маскирует пектиновые соединения);

) повреждение клеточных стенок паразита ферментами растения - хозяина - хитиназой, глюканазой и т.д.;

) возможно, что в ответ на гидролитические ферменты паразита растения синтезируют белки-антиферменты к ним.

Механические компоненты защиты. Взаимодействие растения-хозяина и паразита происходит на поверхности растения, которая, таким образом служит первой линией его обороны. Споры патогена (или сам патоген) вначале должны удержаться на поверхности органа. Этому у многих растений препятствует отложение воска на кутикуле эпидермальных клеток, что делает поверхность гладкой, плохо смачиваемой водой, необходимой для прорастания спор. Патогены (грибы, бактерии, "вирусы) преодолевают этот барьер через устьица, чечевички поранения, а грибы - через кутикулу, активно воздействуя го нее. Покровные ткани служат не только механической преградой, но и токсическим барьером, так как содержат разно образные антибиотические вещества. Эти защитные свойства присущи поверхности растения до инфекции. Но инфекция индуцирует активную реакцию клеток и вызывает изменение этих барьеров:

. Широко распространенной защитной реакцией на заражение является усиление лигнификации клеточных стенок. Лигнификация резко затрудняет проникновение паразита, так как лишь немногие грибы способны расщеплять лигнин. При поражении лигнифицируются даже стенки клеток, где не было лигнина. Этот процесс повышает механическую прочность оболочек, ограничивает распространение токсинов паразита и приток питательных веществ из растения к клеткам паразита, защищает компоненты стенки от атаки ферментами патогена. Показано также, что лигнин растения-хозяина может откладываться в клеточной стенке гиф грибов, останавливая их рост, причем индуцирует такого рода лигнификацию хитин стенки гриба.

. Механическим барьером между некротизированными клетками очага инфекции и живыми клетками становится образующаяся при этом перидерма. Перидерма препятствует распространению паразита, затрудняет приток веществ к некрозу из живых клеток, защищает здоровые клетки растения-хозяина от токсических продуктов некротизированных клеток.

. Если возбудитель (например, мучнистой росы ячменя) образует на поверхности листа апрессорий (орган-присоску для преодоления клеточной стенки), то непосредственно под ним клеточная стенка утолщается. Образуется бугорок-папилла, содержащий лигнин и кремний. Его своевременное формирование не позволяет паразиту проникнуть в клетку.

. Еще одной механической преградой на пути распространения паразита в проводящей системе растения служат тиллы, которые образуются, например, при поражении хлопчатника грибами родов Verticillium и Fusarium. В устойчивых сортах патоген, попадая через корни в проводящую систему, задерживается выпячиваниями в сосудах, представляющими собой содержимое соседних паренхимных клеток, покрытое пектиновым чехлом. Задержанный гриб повреждается антибиотическими веществами.

Фитонциды и фенолы. Важную роль в неспецифической устойчивости растений играют антибиотические вещества - фитонциды, открытые Б.П. Токиным в 20-х годах. К ним относятся низкомолекулярные вещества разнообразного строения (алифатические соединения, хиноны, гликозиды с фенолами, спиртами и т.д.), способные задерживать развитие или убивать микроорганизмы. Выделяясь при поранении (лука, чеснока), летучие фитонциды защищают растение от патогенов уже над поверхностью органов. Нелетучие фитонциды локализованы в покровных тканях и участвуют в создании защитных свойств поверхности. Внутри клеток они могут накапливаться в вакуоли. При повреждениях количество фитонцидов резко возрастает, что предотвращает возможное инфицирование раненых тканей.

К антибиотическим веществам растений относят также фенолы. При повреждениях, инфекциях в клетках активируется полифенолоксидаза, которая окисляет фенолы до высокотоксичных хинонов. В некротических местах после реакции сверхчувствительности окисляющиеся фенолы и хиноны участвуют в образовании меланинов, от которых зависит темный цвет отмерших клеток. Фенольные соединения инактивируют экзоферменты патогенов и необходимы для синтеза лигнина. Паразитарные микроорганизмы легко приспосабливаются к антибиотическим веществам своего растения-хозяина, но роль их в механизмах видового неспецифического фитоиммунитета достаточно велика.

Сверхчувствительность. В ответ на внедрение биотрофных паразитов в клетки устойчивого сорта (например, ржавчины в злаки) в месте контакта с патогеном они быстро отмирают. Эта реакция растения получила название сверхчувствительности. У восприимчивых сортов клетки тканей остаются живыми и паразит распространяется по тканям.

У растений реакция сверхчувствительности возникает при первичном контакте растения с паразитом. Реакцией этой обладают именно устойчивые растения, причем эта устойчивость основана на повышенной чувствительности к инфекции. Отмирание нескольких клеток приводит к образованию некроза, что останавливает перемещение паразита. Затем некротическая ткань окружается барьером из перидермы. Скорость этой реакции очень велика: так, при контакте несовместимой расы возбудителя фитофтороза с листом картофеля клетки отмирают уже через 30 мин. Основная функция реакции сверхчувствительности заключается в подавлении спороношения паразита, которое происходит лишь при его контакте с живыми клетками

Фитоалексины. Изучение факторов, вызывающих гибель патогена в некротизированных участках тканей после реакций сверхчувствительности, привело к открытию К. Мюллером и Г. Бергером веществ, получивших название фитоалексинов. Фитоалексины - это низкомолекулярные антибиотические вещества высших растений, возникающие в растении в ответ на контакт с фитопатогенами; при быстром достижение антимикробных концентраций они могут выполнять защитную роль в фитоиммунитете.

В здоровых тканях фитоалексины отсутствуют. Они обладают антибактериальным, фунгитоксичным и антинематодньм действием. Фитоалексины - конечные продукты измененной заражением метаболизма растения. Вследствие разнообразия растений, патогенов и их взаимодействий велико и химическое разнообразие фитоалексинов. У бобовых это изофлавоноиды у пасленовых - сесквитерпеноидные вещества, у сложно цветных - полиацетилены и т.д. Кроме того, в одном растении в ответ на инфекцию образуется несколько фитоалексинов.

Фитоалексины синтезируются в живых клетках, граничащие с погибающими, вследствие реакции сверхчувствительности Из этих клеток и поступает сигнал о необходимости синтез фитоалексинов, которые затем перемещаются в некротизирс ванные клетки, где находится паразит. Фитоалексины подавляют рост фитопатогенов, дезактивируют их экзоферменты. Транспортируются они по апопласту. Синтез их можно вызвать и химическими веществами: так, фитоалексины картофеля - ришитин и любимин - образуются в клубнях при действии фтористого натрия или сернокислой меди, но во всех случаях это фитоалексины, присущие данному растению.

Показано, что растение восприимчиво к патогену тогда, когда патоген не индуцирует синтез фитоалексинов. Если у растения подавить способность образовывать фитоалексины, то оно становится восприимчивым не только к своему патогену, но и к другим, ранее никогда не поражавшим это растение. Отсюда следует, что фитоалексины участвуют в поддержании и видового иммунитета, и сортовой устойчивости к специализированным патогенам.

Многие высокоспециализированные патогены преодолевают фитоалексиновый барьер, разлагая фитоалексины и прекращая их синтез.

Еще одна возможность поддержания устойчивости растений - регуляция растением-хозяином образования соединений, жизненно важных для паразита. Так, фитофтора не способна продуцировать В-ситостерин, необходимый грибу для образования спор. Его источником для гриба служат клетки растения-хозяина. У устойчивых к фитофторе сортов в месте инфицирования клетки растения резко прекращают синтез В-ситостерина и паразит не может размножаться. Вместе с тем предшественники ситостерина используются на синтез фитоалексинов сесквитерпеноидной природы. Наконец, недостаток В-ситостерина, повреждая мембраны, делает клетки патогена чувствительнее к воздействию фитоалексинов.

Кроме того, выявлено изменение устойчивости и восприимчивости растений-хозяев к возбудителям болезней под влиянием внешних условий и различных биотических факторов (время года, погодные условия, удобрения, возраст растений и их органов и др.). Показано, что у растений наблюдается сенсибилизация устойчивости, т.е. появление устойчивости ко второму возбудителю после предшествующей инфекции (в частности, при вирусных заболеваниях) или ослабление устойчивости к определенному патогену при заболевании, вызванном возбудителем другого вида.

Проблема узнавания и устойчивость. Первый и важнейший этап при взаимодействии растения-хозяина и патогена - взаимное "узнавание". У устойчивых растений он начинается с обездвиживания - иммобилизации патогена. Осуществляется это с участием гликопротеинов, получивших название лектины ( от лат. lectus - избранный - причастия от глагола lego - выбирать, собирать). Они способны связывать определенные углеводы (моно-, олигосахара, углеводные остатки гликолипидов и полисахаридов). Молекула лектина имеет не менее двух участков для связывания углеводов, что позволяет ей склеивать (агглютинировать) молекулы и даже целые клетки, на поверхности которых есть специфические для данного лектина группировки, например эритроциты млекопитающих. В клетках лектины выполняют многообразные функции; одна из них - участие в реакциях узнавания и взаимодействия клеток. Лектины склеивают клетки и споры паразитов, лишая их возможности прорастать и перемещаться.

Существенно также, что лектины связывают споры и клетки тех патогенов, к которым растение устойчиво. Вирулентные штаммы бактерий избегают агглютинации лектинами растения-хозяина благодаря слизистому чехлу, окружающему бактерию.

Исследования последних лет показали, что в системах узнавания при взаимодействии растения-хозяина и паразита функционируют и другие участники. На поверхности иммобилизованного паразита находятся вещества, узнаваемые системами растения-хозяина, - элиситеры ( провокаторы). Элиситеры являются высокомолекулярными глюканами стенок паразита. Растение распознает их с помощью своих мембранных рецепторов. Образование комплекса элиситер-рецептор индуцирует работу систем защиты растения, в частности реакцию сверхчувствительности. Однако взаимодействию элиситеров с рецепторами мешают антиэлиситеры - низкомолекулярные глюканы (супрессоры ), выделяемые кончиком растущей гифы и подавляющие защитные реакции растений. Если супрессор паразита, конкурируя с элиситером за место связывания, занимает его из-за большего сродства к рецептору, то это не позволяет растению включить защитную реакцию, и патоген таким образом преодолевает барьер видового иммунитета растения.

Имеющиеся сведения позволяют представить последовательность включения защитных механизмов растений в ответ на инфекцию:

. Паразит воздействует на клетки растения-хозяина с помощью элиситеров.

. Мембранные рецепторы растения (компоненты системы узнавания) взаимодействуют с элиситерами паразита.

. Образование комплекса элиситер - рецептор индуцирует развитие у растения реакции сверхчувствительности - быструю гибель части клеток и образование некроза.

. Отмирание клеток растения-хозяина приводит к возникновению в них регуляторных молекул - производных полимеров матрикса клеточных стенок. У сои, например, функцию индуктора выполняют небольшие (из 12 молекул-мономеров) фрагменты пектиновых полимеров стенки. Такие регуляторные молекулы П. Альберсхейм назвал олигосахаринами.

5. Олигосахарины погибающих клеток диффундируют к соседним с некрозом здоровым клеткам и вызывают в них синтез фитоалексинов, обеспечивающих видовой иммунитет и сортовую устойчивость растений.


Заключение

 

Удивительная гармония живой природы, ее совершенство создаются самой природой: борьбой за выживание. Формы приспособлений у растений бесконечно разнообразны. Весь растительный мир со времени своего появления совершенствуется по пути целесообразных приспособлений к условиям обитания.

Растения - пойкилотермные организмы. Повреждения начинаются на молекулярном уровне с нарушений функций белков и нуклеиновых кислот. Температура - это фактор, серьезно влияющий на морфологию и физиологию растений, требующий изменений в самом растении, которые могли бы приспособить его. Адаптации растений к разным температурным условиям даже в пределах одного вида различны.

При высоких температурах выявлены такие адаптации, как густое опушение листьев, блестящая поверхность, уменьшение поверхности, поглощающей радиацию, изменение положения по отношению к источнику тепла, усиление транспирации, высокое содержание защитных веществ, сдвиг температурного оптимума активности важнейших ферментов, переход в состояние анабиоза, защищенных от инсоляции и перегрева, сдвиг вегетации на сезон с более благоприятными тепловыми условиями.

Поставленные задачи требуют и новых подходов как в теоретическом, так и в экспериментальном планах. Для понимания и прогнозирования характера роста, развития и продуктивности растений необходимо целостное восприятие растения. Например, продуктивность фотосинтеза зависит от формирования оптимальной листовой поверхности и всех элементов аппарата фотосинтеза, от условий водного, температурного режимов и минерального питания.

Растительные организмы играют ключевую роль в биосфере, ежегодно накапливая огромные массы органического вещества и продуцируя кислород. Человечество использует растения как главный источник питания, а также в качестве технического сырья и строительных материалов в промышленности, топлива для энергетики; из растений получают лекарственные препараты. Рост народонаселения и уменьшение пахотных угодий из-за разрастания городов и промышленности вызывает необходимость новых подходов для получения всех этих продуктов. Для этого имеется несколько путей. Современное растениеводство во все большей степени переходит на интенсивную технологию выращивания сельскохозяйственных культур, что предполагает строгое соблюдение научно обоснованных приемов возделывания и защиты растений, использования наиболее продуктивных сортов для каждой почвенно-климатической зоны.

Огромным резервом сырья является флора морей и океанов, которая еще очень мало используется для нужд человечества. Биомасса культивируемых водорослей нашла применение в качестве кормов в птицеводстве и животноводстве. Биомасса высших растений становится источником получения очищенных белков, углеводов, из которых затем приготавливай так называемую "искусственную пищу".

Новые направления биотехнологии, связанные в культуре растительных тканей и клеток, с использованием иммобилизованных (закрепленных) клеток или ферментов, дают основу для получения лекарственных препаратов и других необходимых продуктов. Клеточная инженерия ставит задачу выведения новых гибридов за счет слияния протопластов, полученных из разных видов. Она уже получила практические результаты в области быстрого размножения наиболее ценных экземпляров путем микроклонирования (выращивание целых растений из отдельных соматических клеток). Большой вклад вносит биотехнология в повышение продуктивности многих культур путем освобождения их тканей от патогенных вирусов (выращивание целых растений из изолированных апексов, в клетках которых вирусы отсутствуют).

Однако наибольший прогресс (качественный скачок) будет достигнут тогда, когда на основе изучения молекулярных механизмов фотосинтеза, азотфиксации, синтеза целлюлозы и других процессов, протекающих в растительных организмах, человечество перейдет к промышленному получению продуктов питания, материалов и топлива. Освоение искусственного фотосинтеза, начиная с получения водорода (как наилучшего топлива) и кончая синтезом углеводов, белков, витаминов и других продуктов, необходимых для питания, радикальным образом изменит условия существования людей, решит проблемы голода, нехватки технического сырья, будет важнейшим вкладом в оздоровление экологической среды. На решение этих задач должны быть направлены усилия физиологов, биохимиков, биофизиков, физико-химиков и всего общества в целом.


Список используемой литературы

 

1. Александров В.Я. Клетки, макромолекулы и температура. Л.: Наука, 1975 г. 328 с.

2. Вознесенский В.Л., Рейнус Р.М. Температура ассимилирующих органов пустынных растений // Бот. журн., 1977; т. 62. N 6

.   Володько И.К. "Микроэлементы и устойчивость растений к неблагоприятным условиям”, Минск, Наука и техника, 1983 г.

.   Генкель П.А. Физиология жаро- и засухоустойчивости растений М., 1982. 280 с.

.   Гродзинский Д.М. Надежность растительных систем. Киев, 366 с.

.   Горышина Т.К. Ранневесенние эфемероиды лесостепных дубрав. Л., Изд-во Ленингр. ун-та. 1969

.   Горышина Т.Н. Экология растений уч. Пособие для ВУЗов, Москва, В. школа, 1979 г. 63-102 с.

.   Деверолл Б. Дж. Защитные механизмы растений. М. 1980.12

.   Колупаев Ю.Е., Карпец Ю.В. 2009. Активные формы кислорода при адаптации растений к стрессовым температурам. Физиология и биохимия культурных растений. 41 (2): 95-108.

.   Кузнецов Вл. В, Шевякова H. H. 1999. Пролин при стрессе: биологическая роль, метаболизм, регуляция. Физиология растений. 46: 391-336.

.   Культиасов И.М. Экология растений М.: Изд-во московского ун-та, 1982 33-89с.

.   Лархер В. Экология растений М.: Мир 1978 г.283-324c.

.   Максимов Н.А. Избранные работы по засухоустойчивости и зимостойкости растений М.: Изд-во АН-СССР. - 1952 т.1-2

.   Метлицкий Л.В., Озерецковская О.Л. Как растения защищаю от болезней. М, 1985.190 с.

.   Механизмы радиоустойчивости растений. Киев, 1976.167 с.

.   Николаевский В.С. Биологические свойства газоустойчивс растений. Новосибирск, 1979.278 с.

.   Рубин Б.А., Арциховская Е.В., Аксенова В.А. Биохш и физиология иммунитета растений. М., 1975.320 с.

.   Полевой В.В. Физиология растений 1978г.414-424с.

.   Ракитина Т.Я., Власов П.В., Жалилова Ф.Х. Кефели В.И. 1994. Абсцизовая кислота и этилен, различающихся по устойчивости к ультрафиолетовой (УФ-Б) радиации. Физиология растений.41: 682-686.

.   Саламатова Т.С. Физиология растительной клетки. Л., 1983.232 с.

.   Селянинов Г.Т. К методике сельскохозяйственной климатологии. Труды по с. - х. метеорологии, 1930, т.22

.   Строгонов Б.П. Метаболизм растений в условиях засоления33-е Тимирязевское чтение. М., 1973.51 с.

.   Токин Б.П. Целебные яды растений.Л., 1980.279 с.

.   Туманов И.М. Физиология закаливания и морозостойкости] тений. М., 1979.352 с.

.   Тихомиров Б.А. Очерки по биологии растений Арктики.Л., Изд-во АН СССР, 1963

.   Туманов И.И. Причины гибели растений в холодное время года и меры её предупреждения.М., Знание, 1955

.   Материалы сайта Википедия www/vikipedia.ru

.   http://freepapers.ru/38/ustojchivost-rastenij-k-infekcionnym-boleznyam/65578.426532. list1.html

.   chrome-extension: // oemmndcbldboiebfnladdacbdfmadadm/http://www.bio. bsu. by/fbr/files/01-02_plant_stress_physiology. pdf

.   http://marsu.ru/science/libr/resours/ecofisiologia%20stressa/pages/4.1 htm



Поделиться:


Последнее изменение этой страницы: 2021-04-20; просмотров: 102; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 13.59.130.154 (0.018 с.)