Возможные исходы лечения ОРДС 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Возможные исходы лечения ОРДС



       Госпитальная летальность у пациентов с ОРДС во многом зависит от основного заболевания и составляет для ОРДС лёгкой степени 25-35%, для среднетяжелого ОРДС 40-50% и для тяжёлого ОРДС 46-60% [24,372–375].

       В течение от полугода до 2-х лет после выписки из ОРИТ у пациента, перенесшего ОРДС, нарушены другие функции (мышечная сила, физическая активность)[376]. По сравнению с бывшими пациентами хирургических ОРИТ без ОРДС стандартная реабилитационная терапия в течение раннего восстановительного периода после критического состояния не показывает значимых улучшений физической выносливости и силы. Более того, часть пациентов также страдает от депрессии (26–33%), тревоги (38–44%) или посттравматического расстройства психики (22–24%). В целом, уровень физической активности и функциональной автономности после перенесенного ОРДС снижен по сравнению с пациентами, перенесшими критическое состояние без ОРДС. Общее качество жизни у пациентов, перенесших ОРДС, значительно снижено по сравнению с похожими пациентами, не перенесшими ОРДС [376]. Около 50% пациентов, перенесших ОРДС, могут вести нормальный или почти нормальный образ жизни [377–380].

У больных с ОРДС механика внешнего дыхания возвращается к норме в течение 1 года после выписки из клиники. Снижение диффузионной способности, увеличение мертвого пространства при физических нагрузках, а также легочная гипертензия могут сохраняться длительно [379,380].

Условия оказания медицинской помощи

Медицинская помощь, регламентируемая данным протоколом, осуществляется в условиях стационара. Профиль – анестезиолого-реанимационный. Функциональное назначение медицинской помощи – лечебно-диагностическая.

 

Кодирование по номенклатуре медицинских услуг

Кодирование по номенклатуре медицинских услуг, согласно приказа Министерства здравоохранения РФ от 13 октября 2017 года № 804н «Об утверждении номенклатуры медицинских услуг».

A16.09.011 Искусственная вентиляция легких
A16.09.011.001 Искусственная вентиляция легких с раздельной интубацией бронхов
A16.09.011.002 Неинвазивная искусственная вентиляция легких
A16.09.011.003 Высокочастотная искусственная вентиляция легких
A16.09.011.004 Синхронизированная перемежающаяся принудительная вентиляция легких
A16.09.011.005 Вспомогательная искусственная вентиляция легких
A16.09.011.006 Неинвазивная вентиляция с двухуровневым положительным давлением
A25.09.001 Назначение лекарственных препаратов при заболеваниях нижних дыхательных путей и легочной ткани
A25.09.002 Назначение диетического питания при заболеваниях нижних дыхательных путей и легочной ткани
A25.09.003 Назначение лечебно-оздоровительного режима при заболеваниях нижних дыхательных путей и легочной ткани
A25.30.011 Назначение лекарственных препаратов врачом-анестезиологом-реаниматологом
B01.003.001 Осмотр (консультация) врачом-анестезиологом-реаниматологом первичный
B01.003.002 Осмотр (консультация) врачом-анестезиологом-реаниматологом повторный
B02.003.001 Процедуры сестринского ухода за пациентом, находящимся в отделении интенсивной терапии и реанимации
B02.003.002 Процедуры сестринского ухода за пациентом, находящимся на искусственной вентиляции легких
B02.003.003 Процедуры сестринского ухода за фиксированным пациентом
B02.003.004 Процедуры сестринского ухода за пациентом в критическом состоянии

 

Клинические рекомендации подготовлены рабочей группой в составе:

       Ярошецкий А.И. (Москва) (отв.редактор), Грицан А.И. (Красноярск) (отв.редактор), Авдеев С.Н. (Москва), Власенко А.В. (Москва), Заболотских И.Б. (Краснодар), Еременко А.А. (Москва), Зильбер А.П. (Петрозаводск), Киров М.Ю. (Архангельск), Лебединский К.М. (Санкт-Петербург), Лейдерман И.Н. (Санкт-Петербург), Мазурок В.А. (Санкт-Петербург), Николаенко Э.М. (Москва), Проценко Д.Н. (Москва), Солодов А.А. (Москва)

 

Критерии оценки качества медицинской помощи

Таблица 3.

Критерий качества Уровень достоверности доказательств Уровень убедительности рекомендаций
1 Своевременно установлены показания к началу ИВЛ и начата ИВЛ 3 В
2 Достигнуты целевые значения PaO2 и PaCO2 в соответствии рекомендациями 2 В
3 Использован дыхательный объем 6-8 мл/кг идеальной массы тела 1 А
4 Выполнена оценка рекрутабельности легочной ткани одним из методов 2 В
5 Выполнена КТ легких 3 С
6 У пациентов с высокой рекрутабельностью альвеол уровень РЕЕР и FiO2 установлен в соответствии с рекомендациями, но не ниже 10 мбар 1 A
7 Выполнена прон-позиция в соответствии с рекомендациями 1 А
8 Выполнена оценка риска острого легочного сердца по шкале острого легочного сердца 3 В
9 Использована «лёгкая» седация у пациентов с ОРДС лёгкой и средней степени (RASS -1-2 балла) или глубокая седация (RASS -4 балла) и миоплегия у пациентов с ОРДС тяжелой степени 2 В

 

Литература:

1. Ware L.B., Matthay M.A. The Acute Respiratory Distress Syndrome. N Engl J Med. Massachusetts Medical Society; 2000;№ 342 (18):1334–1349.

2. Hudson L.D., Milberg J.A., Anardi D. et al. Clinical risks for development of the acute respiratory distress syndrome. Am J Respir Crit Care Med. 1995;№ 151 (2 I):293–301.

3. Fowler A.A., Hamman R.F., Good J.T. et al. Adult respiratory distress syndrome: Risk with common predispositions. Ann Intern Med. 1983;№ 98 (5):593–597.

4. Pepe P.E., Potkin R.T., Reus D.H. et al. Clinical predictors of the adult respiratory distress syndrome. Am J Surg. 1982;№ 144 (1):124–130.

5. Острый респираторный дистресс-синдром. Практическое руководство. Под ред.: Гельфанд Б.Р., Кассиль В.Л. Москва: Литтерра; 2007, 232 с.

6. Власенко А.В., Голубев А.М., Мороз В.Н. и др. Патогенез и дифференциальная диагностика острого респираторного дистресс-синдрома, обусловленного прямыми и непрямыми этиологическими факторами. Общая реаниматология. 2011;№ VIII (3): с.5–13.

7. Gattinoni L., Pelosi P., Suter P.M. et al. Acute respiratory distress syndrome caused by pulmonary and extrapulmonary disease: Different syndromes? Am J Respir Crit Care Med. 1998;№ 158 (1):3–11.

8. Moss M., Guidot D.M., Duhon G.F. et al. Diabetic patients have a decreased incidence of acute respiratory distress syndrome [Internet]. Crit. Care Med. Lippincott Williams and Wilkins; 2000. p. 2187–2192.

9. Frank J.A., Nuckton T.J., Matthay M.A. Diabetes mellitus: A negative predictor for the development of acute respiratory distress syndrome from septic shock [Internet]. Crit. Care Med. Lippincott Williams and Wilkins; 2000. p. 2645–2646.

10. Moss M., Parsons P.E., Steinberg K.P. et al. Chronic alcohol abuse is associated with an increased incidence of acute respiratory distress syndrome and severity of multiple organ dysfunction in patients with septic shock. Crit Care Med. 2003;№ 31 (3):869–877.

11. Boyle A.J., Madotto F., Laffey J.G. et al. Identifying associations between diabetes and acute respiratory distress syndrome in patients with acute hypoxemic respiratory failure: an analysis of the LUNG SAFE database. Crit Care. BioMed Central Ltd.; 2018;№ 22 (1).

12. Грицан А.И., Колесниченко А.П., Ишутин В.В. и др. Опыт проведения респираторной поддержки у беременных женщин с вирусно-бактериальными пневмониями, осложненными ОРДС // Научные тезисы XII съезда Федерации анестезиологов и реаниматологов, Москва, 19-22 сентября 2010 г. - Москва. - 2010. - С.122-123.

13. Michard F., Fernandez-Mondejar E., Kirov M.Y. et al. A new and simple definition for acute lung injury [Internet]. Crit. Care Med. 2012. p. 1004–1006.

14. Malbrain M.L.N.G., Chiumello D., Pelosi P. et al. Incidence and prognosis of intraabdominal hypertension in a mixed population of critically ill patients: a multiple-center epidemiological study. Crit Care Med. 2005;№ 33 (2):315–322.

15. Mutoh T., Lamm W.J., Embree L.J. et al. Volume infusion produces abdominal distension, lung compression, and chest wall stiffening in pigs. J Appl Physiol. 1992;№ 72 (2):575–582.

16. Malbrain M.L.N.G.N.G., Chiumello D., Pelosi P. et al. Prevalence of intra-abdominal hypertension in critically ill patients: A multicentre epidemiological study. Intensive Care Med. 2004;№ 30 (5):822–829.

17. Гайгольник Д.В., Беляев К.Ю., Грицан Е.А. и др. Биомеханика и газообмен в процессе респираторной поддержки у пациентов с некротическим панкреатитом в зависимости от исходов лечения. Вестник интенсивной терапии. 2019; (1): с.65–77.

18. Behazin N., Jones S.B., Cohen R.I. et al. Respiratory restriction and elevated pleural and esophageal pressures in morbid obesity. J Appl Physiol. 2010;№ 108 (1):212–218.

19. Ярошецкий А.И., Проценко Д.Н., Резепов Н.А. и др. Настройка положительного давления конца выдоха при паренхиматозной ОДН: Статическая петля “давление-объем” или транспульмональное давление? Анестезиология и реаниматология. 2014; (4): с.53–59.

20. Fumagalli J., Santiago R.R.S., Teggia Droghi M. et al. Lung Recruitment in Obese Patients with Acute Respiratory Distress Syndrome. Anesthesiology. Lippincott Williams and Wilkins; 2019;№ 130 (5):791–803.

21. Garber B.G., Hébert P.C., Yelle J.D. et al. Adult respiratory distress syndrome: a systemic overview of incidence and risk factors. Crit Care Med. 1996;№ 24 (4):687–695.

22. Luhr O.R., Antonsen K., Karlsson M. et al. Incidence and mortality after acute respiratory failure and acute respiratory distress syndrome in Sweden, Denmark, and Iceland. Am J Respir Crit Care Med. American Lung Association; 1999;№ 159 (6):1849–1861.

23. Roupie E., Lepage E., Wysocki M. et al. Prevalence, etiologies and outcome of the acute respiratory distress syndrome among hypoxemic ventilated patients. SRLF Collaborative Group on Mechanical Ventilation. Société de Réanimation de Langue Française. Intensive Care Med. 1999;№ 25 (9):920–929.

24. Gattinoni L., Haren F. Van, Larsson A. et al. Epidemiology, Patterns of Care, and Mortality for Patients With Acute Respiratory Distress Syndrome in Intensive Care Units in 50 Countries. Jama. 2016;№ 315 (8):788–.

25. Rubenfeld G.D., Caldwell E., Peabody E. et al. Incidence and Outcomes of Acute Lung Injury. N Engl J Med. 2005;№ 353 (16):1685–1693.

26. Madotto F., Pham T., Bellani G. et al. Resolved versus confirmed ARDS after 24 h: insights from the LUNG SAFE study. Intensive Care Med. Springer; 2018;№ 44 (5):564–577.

27. Кассиль В.Л., Выжигина М.А., Лескин Г.С. Искусственная и вспомогательная вентиляция легких. Санкт-Петербург: Медицина; 2004.

28. Ranieri V.M., Rubenfeld G.D., Thompson B.T. et al. Acute respiratory distress syndrome: The Berlin definition. JAMA - J Am Med Assoc. 2012;№ 307 (23):2526–2533.

29. Fein A.M., Lippmann M., Holtzman H. et al. The risk factors, incidence, and prognosis of ARDS following septicemia. Chest. 1983;№ 83 (1):40–42.

30. Iscimen R., Cartin-Ceba R., Yilmaz M. et al. Risk factors for the development of acute lung injury in patients with septic shock: An observational cohort study. Crit Care Med. Lippincott Williams and Wilkins; 2008;№ 36 (5):1518–1522.

31. Sheu C.C., Gong M.N., Zhai R. et al. Clinical characteristics and outcomes of sepsis-related vs non-sepsis-related ARDS. Chest. American College of Chest Physicians; 2010;№ 138 (3):559–567.

32. Cortegiani A., Madotto F., Gregoretti C. et al. Immunocompromised patients with acute respiratory distress syndrome: Secondary analysis of the LUNG SAFE database. Crit Care. BioMed Central Ltd.; 2018;№ 22 (1):157.

33. Murphy C. V., Schramm G.E., Doherty J.A. et al. The importance of fluid management in acute lung injury secondary to septic shock. Chest. American College of Chest Physicians; 2009;№ 136 (1):102–109.

34. Gajic O., Dara S.I., Mendez J.L. et al. Ventilator-associated lung injury in patients without acute lung injury at the onset of mechanical ventilation. Crit Care Med. 2004;№ 32 (9):1817–1824.

35. Esteban A., Fernández-Segoviano P., Frutos-Vivar F. et al. Comparison of clinical criteria for the acute respiratory distress syndrome with autopsy findings. Ann Intern Med. American College of Physicians; 2004;№ 141 (6):440–445.

36. Ferguson N.D., Frutos-Vivar F., Esteban A. et al. Acute respiratory distress syndrome: underrecognition by clinicians and diagnostic accuracy of three clinical definitions. Crit Care Med. 2005;№ 33 (10):2228–2234.

37. Ярошецкий А.И., Проценко Д.Н., Ларин Е.С. и др. Роль оценки статической петли «давление-объем» в дифференциальной диагностике и оптимизации параметров респираторной поддержки при паренхиматозной дыхательной недостаточности. Анестезиология и реаниматология. 2014; (2): с.21–26.

38. Dreyfuss D., Saumon G. Ventilator-induced lung injury: Lessons from experimental studies. Am J Respir Crit Care Med. 1998;№ 157 (1):294–323.

39. Webb H.H., Tierney D.F. Experimental pulmonary edema due to intermittent positive pressure ventilation with high inflation pressures. Protection by positive end expiratory pressure. AMERREVRESPDIS. 1974;№ 110 (5):556–565.

40. Dreyfuss D., Soler P., Basset G. et al. High inflation pressure pulmonary edema. Respective effects of high airway pressure, high tidal volume, and positive end-expiratory pressure. Am Rev Respir Dis. 1988;№ 137 (5):1159–1164.

41. Caironi P., Cressoni M., Chiumello D. et al. Lung Opening and Closing during Ventilation of Acute Respiratory Distress Syndrome. Am J Respir Crit Care Med. 2010;№ 181 (6):578–586.

42. D’Alonzo G.E., Dantzker D.R. Respiratory failure, mechanisms of abnormal gas exchange, and oxygen delivery. Med Clin North Am. 1983;№ 67 (3):557–571.

43. Ganapathy A., Adhikari N.K.J., Spiegelman J. et al. Routine chest x-rays in intensive care units: a systematic review and meta-analysis. Crit Care. 2012;№ 16 (2):R68.

44. Gattinoni L., Caironi P., Pelosi P. et al. What has computed tomography taught us about the acute respiratory distress syndrome? Am J Respir Crit Care Med. 2001;№ 164 (9):1701–1711.

45. Malbouisson L.M., Muller J.C., Constantin J.M. et al. Computed tomography assessment of positive end-expiratory pressure-induced alveolar recruitment in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med. 2001;№ 163 (6):1444–1450.

46. Papazian L., Calfee C.S., Chiumello D. et al. Diagnostic workup for ARDS patients. Intensive Care Med. 2016.

47. Gattinoni L., Tonetti T., Quintel M. Regional physiology of ARDS. Crit. Care. 2017.

48. Gattinoni L., Pesenti A. The concept of “baby lung.” Intensive Care Med. 2005;№ 31 (6):776–784.

49. Brunet F., Jeanbourquin D., Monchi M. et al. Should mechanical ventilation be optimized to blood gases, lung mechanics, or thoracic CT scan? Am J Respir Crit Care Med. 1995;№ 152 (2):524–530.

50. Chiumello D., Marino A., Brioni M. et al. Lung Recruitment Assessed by Respiratory Mechanics and by CT Scan: What is the Relationship? Am J Respir Crit Care Med. 2015;1–67.

51. Goodman L.R., Fumagalli R., Tagliabue P. et al. Adult Respiratory Distress Syndrome Due to Pulmonary and Extrapulmonary Causes: CT, Clinical, and Functional Correlations1. Radiology. 1999;№ 213 (2):545–552.

52. Bellani G., Mauri T., Pesenti A. Imaging in acute lung injury and acute respiratory distress syndrome. Curr Opin Crit Care. 2012;№ 18 (1):29–34.

53. Кузовлев А.Н., Мороз В.В., Голубев А.М. Диагностика острого респираторного дистресс- синдрома при нозокомиальной пневмонии. Общая реаниматология. 2009; (6):5–12.

54. Cressoni M., Cadringher P., Chiurazzi C. et al. Lung Inhomogeneity in Patients with Acute Respiratory Distress Syndrome. Am J Respir Crit Care Med. 2013;№ 189 (2).

55. Henne E., Anderson J.C., Lowe N. et al. Comparison of human lung tissue mass measurements from ex vivo lungs and high resolution CT software analysis. BMC Pulm Med. BioMed Central; 2012;№ 12:18.

56. Hall J.E. Guyton and Hall Textbook of medical physiology. 13th ed. Elsevier; 2015.

57. Barcroft J., Camis M. The dissociation curve of blood. J Physiol. Wiley-Blackwell; 1909;№ 39 (2):118–142.

58. Rice T.W., Wheeler A.P., Bernard G.R. et al. Comparison of the SpO2/FIO2 ratio and the PaO 2/FIO2 ratio in patients with acute lung injury or ARDS. Chest. American College of Chest Physicians; 2007;№ 132 (2):410–417.

59. Ashbaugh D., Boyd Bigelow D., Petty T. et al. Acute respiratory distress in adults. Lancet. Elsevier; 1967;№ 290 (7511):319–323.

60. Murray J.F., Matthay M.A., Luce J.M. et al. An expanded definition of the adult respiratory distress syndrome. Am Rev Respir Dis. 1988;№ 138 (3):720–723.

61. Bernard G.R., Artigas A., Brigham K.L. et al. The American-European Consensus Conference on ARDS: Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med. American Thoracic Society; 1994. p. 818–824.

62. Thille A.W., Esteban A., Fernández-Segoviano P. et al. Comparison of the berlin definition for acute respiratory distress syndrome with autopsy. Am J Respir Crit Care Med. 2013;№ 187 (7):761–767.

63. Guerin C., Bayle F., Leray V. et al. Open lung biopsy in nonresolving ARDS frequently identifies diffuse alveolar damage regardless of the severity stage and may have implications for patient management. Intensive Care Med. Springer Verlag; 2015;№ 41 (2):222–230.

64. Ferguson N.D., Davis A.M., Slutsky A.S. et al. Development of a clinical definition for acute respiratory distress syndrome using the Delphi technique. J Crit Care. 2005;№ 20 (2):147–154.

65. Pelosi P., D’Onofrio D., Chiumello D. et al. Pulmonary and extrapulmonary acute respiratory distress syndrome are different. Eur Respir J Suppl. 2003;№ 42:48s-56s.

66. Amato M.B.P., Meade M.O., Slutsky A.S. et al. Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med. Massachusetts Medical Society; 2015;№ 372 (8):747–755.

67. Moss M., Goodman P.L., Heinig M. et al. Establishing the relative accuracy of three new definitions of the adult respiratory distress syndrome [Internet]. Crit. Care Med. 1995. p. 1629–1637.

68. Gattinoni L., Carlesso E., Cressoni M. Selecting the ‘right’ positive end-expiratory pressure level. Curr Opin Crit Care. 2015;№ 21 (1):50–57.

69. Chiumello D., Cressoni M., Carlesso E. et al. Bedside selection of positive end-expiratory pressure in mild, moderate, and severe acute respiratory distress syndrome. Crit Care Med. 2014;№ 42 (2):252–264.

70. Kuzkov V. V., Kirov M.Y., Sovershaev M.A. et al. Extravascular lung water determined with single transpulmonary thermodilution correlates with the severity of sepsis-induced acute lung injury. Crit Care Med. 2006;№ 34 (6):1647–1653.

71. Кузьков В.В., Смёткин А.А., Суборов Е.В. и др. Внесосудистая вода легких и рекрутмент альвеол у пациентов с острым респираторным дистресс-синдромом. Вестник анестезиологии и реаниматологии. 2012;№ 9 (2): с.15–21.

72. Blankman P., Shono A., Hermans B.J.M. et al. Detection of optimal PEEP for equal distribution of tidal volume by volumetric capnography and electrical impedance tomography during decreasing levels of PEEP in post cardiac-surgery patients. Br J Anaesth. 2016;№ 116 (6).

73. Talmor D., Sarge T., O’Donnell C.R. et al. Esophageal and transpulmonary pressures in acute respiratory failure. Crit Care Med. 2006;№ 34 (5):1389–1394.

74. Vieira S.R.R., Puybasset L., Lu Q. et al. A scanographic assessment of pulmonary morphology in acute lung injury: Significance of the lower inflection point detected on the lung pressure- volume curve. Am J Respir Crit Care Med. 1999;№ 159 (5 I):1612–1623.

75. Loring S.H., O’Donnell C.R., Behazin N. et al. Esophageal pressures in acute lung injury: do they represent artifact or useful information about transpulmonary pressure, chest wall mechanics, and lung stress? J Appl Physiol. 2010;№ 108 (3):515–522.

76. Silva P.L., Pelosi P., Rocco P.R.M. Optimal mechanical ventilation strategies to minimize ventilator-induced lung injury in non-injured and injured lungs. Expert Rev Respir Med. 2016;№ 10 (12):1–3.

77. West J.B., Luks A. West’s respiratory physiology : the essentials. 10th ed. Lippincott Williams & Wilkins; 2016.

78. Gulati G., Novero A., Loring S.H. et al. Pleural pressure and optimal positive end-expiratory pressure based on esophageal pressure versus chest wall elastance: incompatible results*. Crit Care Med. 2013;№ 41 (8):1951–1957.

79. Gattinoni L., Vagginelli F., Chiumello D. et al. Physiologic rationale for ventilator setting in acute lung injury/acute respiratory distress syndrome patients. Crit Care Med. 2003;№ 31 (4 Suppl):S300–S304.

80. Beitler J.R., Sarge T., Banner-Goodspeed V.M. et al. Effect of Titrating Positive End-Expiratory Pressure (PEEP) with an Esophageal Pressure-Guided Strategy vs an Empirical High PEEP-F io 2 Strategy on Death and Days Free from Mechanical Ventilation among Patients with Acute Respiratory Distress Syndrome: A Randomized Clinical Trial. JAMA - J Am Med Assoc. American Medical Association; 2019. p. 846–857.

81. Ярошецкий А.И., Проценко Д.Н., Бойцов П.В. и др. Оптимальное положительное конечно-экспираторное давление при ОРДС у больных гриппом а(H1N1)pdm09: баланс между максимумом конечно-экспираторного объема и минимумом перераздувания альвеол. Анестезиология и реаниматология. 2016;№ 61 (6): с.425–432.

82. Thille A.W., Richard J.-C.M., Maggiore S.M. et al. Alveolar Recruitment in Pulmonary and Extrapulmonary Acute Respiratory Distress SyndromeComparison Using Pressure-Volume Curve or Static Compliance. J Am Soc Anesthesiol. The American Society of Anesthesiologists; 2007;№ 106 (2):212–217.

83. Ярошецкий А.И. Респираторная поддержка при гипоксемической острой дыхательной недостаточности: стратегия и тактика на основе оценки биомеханики дыхания: дис.... д-ра. мед. наук: 14.01.20 / Москва,. 2019;473.

84. Кузьков В.В., Киров М.Ю., Вэрхауг К. и др. Оценка современных методов измерения внесосудистой воды легких и аэрации при негомогенном повреждении легких (экспериментальное исследование). Анестезиология и реаниматология. 2007; (3): с.42–45.

85. Zhang J.C., Chu Y.F., Zeng J. et al. Effect of continuous high-volume hemofiltration in patients with severe acute respiratory distress syndrome. Chinese Crit Care Med. 2013;№ 25 (3):145–148.

86. Bein T., Grasso S., Moerer O. et al. The standard of care of patients with ARDS: ventilatory settings and rescue therapies for refractory hypoxemia. Intensive Care Med. 2016;№ 42 (5):699–711.

87. Xie J., Yang J. [Effect of continuous high-volume hemofiltration on patients with acute respiratory distress syndrome and multiple organ dysfunction syndrome]. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue. 2009;№ 21 (7):402–404.

88. Pelosi P., Croci M., Ravagnan I. et al. The effects of body mass on lung volumes, respiratory mechanics, and gas exchange during general anesthesia. Anesth Analg. 1998;№ 87 (3):654–660.

89. Pelosi P., Quintel M., Malbrain M.L.N.G. Effect of intra-abdominal pressure on respiratory mechanics. Acta Clin Belg. 2007;№ 62 Suppl 1:78–88.

90. Власенко А.В., Голубев А.М., Мороз В.В. et al. Дифференцированное лечение острого респираторного дистресс-синдрома. Общая реаниматология. 2011;№ VII (4):5–14.

91. Protti A., Andreis D.T., Iapichino G.E. et al. Ventilation with Lower Tidal Volumes as Compared with Traditional Tidal Volumes for Acute Lung Injury and the Acute Respiratory Distress Syndrome. N Engl J Med. BioMed Central; 2000;№ 342 (18):1301–1308.

92. Frat J.-P., Thille A.W., Mercat A. et al. High-Flow Oxygen through Nasal Cannula in Acute Hypoxemic Respiratory Failure. N Engl J Med. Massachusetts Medical Society; 2015;№ 372 (23):2185–2196.

93. Stéphan F., Barrucand B., Petit P. et al. High-Flow Nasal Oxygen vs Noninvasive Positive Airway Pressure in Hypoxemic Patients After Cardiothoracic Surgery. JAMA. 2015;№ 313 (23):2331–2339.

94. Combes A., Hajage D., Capellier G. et al. Extracorporeal Membrane Oxygenation for Severe Acute Respiratory Distress Syndrome. N Engl J Med. Massachussetts Medical Society; 2018;№ 378 (21):1965–1975.

95. Michael J.R., Barton R.G., Saffle J.R. et al. Inhaled nitric oxide versus conventional therapy: Effect on oxygenation in ARDS. Am J Respir Crit Care Med. 1998;№ 157 (5 PART I):1372–1380.

96. Gerlach M., Keh D., Gerlach H. Inhaled nitric oxide for acute respiratory distress syndrome. Respir Care. 1999. p. 184–192.

97. Lundin S., Mang H., Smithies M. et al. Inhalation of nitric oxide in acute lung injury: Results of a European multicentre study. Intensive Care Med. 1999;№ 25 (9):911–919.

98. Kallet R.H. Evidence-based management of acute lung injury and acute respiratory distress syndrome. Respir Care. 2004;№ 49 (7):793–809.

99. Vieillard-Baron A., Matthay M., Teboul J.L. et al. Expert’s opinion on management of hemodynamics in ARDS patients: focus on the effects of mechanical ventilation. Intensive Care Med. 2016;№ 42 (5):739–749.

100. Chen X., Ye J., Zhu Z. et al. Evaluation of high volume hemofiltration according to pulse-indicated continuous cardiac output on patients with acute respiratory distress syndrome. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. Heilongjiang Institute of Science and Technology Information; 2014;№ 26 (9):650–654.

101. Beitler J.R., Malhotra A., Thompson B.T. Ventilator-induced Lung Injury. Clin Chest Med. 2016;№ 37 (4):633–646.

102. Meade M.O., Cook D.J., Guyatt G.H. et al. Ventilation strategy using low tidal volumes, recruitment maneuvers, and high positive end-expiratory pressure for acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA. 2008;№ 299 (6):637–645.

103. McClave S.A., Taylor B.E., Martindale R.G. et al. Guidelines for the Provision and Assessment of Nutrition Support Therapy in the Adult Critically Ill Patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.). J Parenter Enter Nutr. 2016;№ 40 (2):159–211.

104. Singer P., Reintam Blaser A., Berger M.M. et al. ESPEN guideline on clinical nutrition in the intensive care unit. Clin Nutr. 2019;№ 38:48–79.

105. Kangelaris K.N., Ware L.B., Wang C.Y. et al. Timing of intubation and clinical outcomes in adults with acute respiratory distress syndrome. Crit Care Med. Lippincott Williams and Wilkins; 2016;№ 44 (1):120–129.

106. Antonelli M., Conti G., Esquinas A. et al. A multiple-center survey on the use in clinical practice of noninvasive ventilation as a first-line intervention for acute respiratory distress syndrome*. Crit Care Med. 2007;№ 35 (1):18–25.

107. Demoule A., Girou E., Richard J.-C. et al. Benefits and risks of success or failure of noninvasive ventilation. Intensive Care Med. 2006;№ 32 (11):1756–1765.

108. Parsons P.E., Eisner M.D., Thompson B.T. et al. Lower tidal volume ventilation and plasma cytokine markers of inflammation in patients with acute lung injury. Crit Care Med. 2005;№ 33 (1):1–6; discussion 230-232.

109. McMullen S.M., Meade M., Rose L. et al. Partial ventilatory support modalities in acute lung injury and acute respiratory distress syndrome-A systematic review. PLoS One. 2012;№ 7 (8):e40190.

110. Brower R.G., Lanken P.N., MacIntyre N. et al. Higher versus Lower Positive End-Expiratory Pressures in Patients with the Acute Respiratory Distress Syndrome. N Engl J Med. Massachusetts Medical Society; 2004;№ 351 (4):327–336.

111. Slutsky A.S. Mechanical ventilation. American College of Chest Physicians’ Consensus Conference. Chest. 1993. p. 1833–1859.

112. Peters S.G., Holets S.R., Gay P.C. Nasal High Flow Oxygen Therapy in Do-Not-Intubate Patients With Hypoxemic Respiratory Distress. Respir Care. 2012;№ 58 (4):597–600.

113. Vargas F., Saint-Leger M., Boyer A. et al. Physiologic effects of high-flow nasal Cannula oxygen in critical care subjects. Respir Care. American Association for Respiratory Care; 2015;№ 60 (10):1369–1376.

114. Miguel-Montanes R., Hajage D., Messika J. et al. Use of High-Flow Nasal Cannula Oxygen Therapy to Prevent Desaturation During Tracheal Intubation of Intensive Care Patients With Mild-to-Moderate Hypoxemia*. Crit Care Med. 2015;№ 43 (3):574–583.

115. Simon M., Wachs C., Braune S. et al. High-flow nasal cannula versus bag-valve-mask for preoxygenation before intubation in subjects with hypoxemic respiratory failure. Respir Care. American Association for Respiratory Care; 2016;№ 61 (9):1160–1167.

116. Aggarwal N.R., Brower R.G., Hager D.N. et al. Oxygen Exposure Resulting in Arterial Oxygen Tensions Above the Protocol Goal Was Associated With Worse Clinical Outcomes in Acute Respiratory Distress Syndrome. Crit Care Med. NLM (Medline); 2018;№ 46 (4):517–524.

117. Hofmann R., James S.K., Jernberg T. et al. Oxygen therapy in suspected acute myocardial infarction. N Engl J Med. Massachussetts Medical Society; 2017;№ 377 (13):1240–1249.

118. Damiani E., Adrario E., Girardis M. et al. Arterial hyperoxia and mortality in critically ill patients: a systematic review and meta-analysis. Crit Care. BioMed Central Ltd.; 2014;№ 18 (6):711.

119. Roffe C., Nevatte T., Sim J. et al. Effect of routine low-dose oxygen supplementation on death and disability in adults with acute stroke: The stroke oxygen study randomized clinical trial. JAMA - J Am Med Assoc. American Medical Association; 2017;№ 318 (12):1125–1135.

120. Elmer J., Scutella M., Pullalarevu R. et al. The association between hyperoxia and patient outcomes after cardiac arrest: analysis of a high-resolution database. Intensive Care Med. Springer Verlag; 2015;№ 41 (1):49–57.

121. Page D., Ablordeppey E., Wessman B.T. et al. Emergency department hyperoxia is associated with increased mortality in mechanically ventilated patients: A cohort study. Crit Care. BioMed Central Ltd.; 2018;№ 22 (1):9.

122. Pollack C. V., Diercks D.B., Roe M.T. et al. 2004 American College of Cardiology/American Heart Association guidelines for the management of patients with ST-elevation myocardial infarction: Implications for emergency department practice. Ann Emerg Med. Mosby Inc.; 2005;№ 45 (4):363–376.

123. Arntz H.R., Bossaert L., Filippatos G.S. European Resuscitation Council Guidelines for Resuscitation 2005: Section 5. Initial management of acute coronary syndromes. Resuscitation. 2005. p. S87-96.

124. Tolias C.M., Reinert M., Seiler R. et al. Normobaric hyperoxia-induced improvement in cerebral metabolism and reduction in intracranial pressure in patients with severe head injury: A prospective historical cohort-matched study [Internet]. J. Neurosurg. American Association of Neurological Surgeons; 2004. p. 435–444.

125. Menzel M., Doppenberg E.M.R., Zauner A. et al. Cerebral oxygenation in patients after severe head injury: Monitoring and effects of arterial hyperoxia on cerebral blood flow, metabolism, and intracranial pressure. J Neurosurg Anesthesiol. Lippincott Williams and Wilkins; 1999;№ 11 (4):240–251.

126. Rockswold S.B., Rockswold G.L., Zaun D.A. et al. A prospective, randomized Phase II clinical trial to evaluate the effect of combined hyperbaric and normobaric hyperoxia on cerebral metabolism, intracranial pressure, oxygen toxicity, and clinical outcome in severe traumatic brain injury. J Neurosurg. 2013;№ 118 (6):1317–1328.

127. Taher A., Pilehvari Z., Poorolajal J. et al. Effects of normobaric hyperoxia in traumatic brain injury: A randomized controlled clinical trial. Trauma Mon. Kowsar Medical Publishing Company; 2016;№ 21 (1).

128. Quintard H., Patet C., Suys T. et al. Normobaric Hyperoxia is Associated with Increased Cerebral Excitotoxicity After Severe Traumatic Brain Injury. Neurocrit Care. Humana Press Inc.; 2015;№ 22 (2):243–250.

129. Timofeev I., Carpenter K.L.H., Nortje J. et al. Cerebral extracellular chemistry and outcome following traumatic brain injury: a microdialysis study of 223 patients. Brain. 2011;№ 134 (Pt 2):484–494.

130. Barrot L., Asfar P., Mauny F. et al. Liberal or Conservative Oxygen Therapy for Acute Respiratory Distress Syndrome. N Engl J Med. 2020;№ 382 (11):999.

131. Nin N., Muriel A., Peñuelas O. et al. Severe hypercapnia and outcome of mechanically ventilated patients with moderate or severe acute respiratory distress syndrome. Intensive Care Med. Springer Verlag; 2017;№ 43 (2):200–208.

132. Tiruvoipati R., Pilcher D., Buscher H. et al. Effects of Hypercapnia and Hypercapnic Acidosis on Hospital Mortality in Mechanically Ventilated Patients. Crit Care Med. Lippincott Williams and Wilkins; 2017;№ 45 (7):e649–e656.

133. Mekontso Dessap A., Boissier F., Charron C. et al. Acute cor pulmonale during protective ventilation for acute respiratory distress syndrome: prevalence, predictors, and clinical impact. Intensive Care Med. 2016;№ 42 (5):862–870.

134. Schnader J.Y., Juan G., Howell J.S. Arterial CO2 partial pressure affects diaphragmatic function. J Appl Physiol. 1985;№ 58 (3):823–829.

135. Mador M.J., Wendel T., Kufel T.J. Effect of acute hypercapnia on diaphragmatic and limb muscle contractility. Am J Respir Crit Care Med. American Thoracic Society; 1997;№ 155 (5):1590–1595.

136. Rafferty G.F., Harris M. Lou, Polkey M.I. et al. Effect of hypercapnia on maximal voluntary ventilation and diaphragm fatigue in normal humans. Am J Respir Crit Care Med. American Lung Association; 1999;№ 160 (5 I):1567–1571.

137. Juan G., Calverley P., Talamo C. et al. Effect of Carbon Dioxide on Diaphragmatic Function in Human Beings. N Engl J Med. 1984;№ 310 (14):874–879.

138. Briva A., Vadász I., Lecuona E. et al. High CO2 levels impair alveolar epithelial function independently of pH. PLoS One. 2007;№ 2 (11):e1238.

139. Doerr C.H., Gajic O., Berrios J.C. et al. Hypercapnic acidosis impairs plasma membrane wound reseating in ventilator-injured lungs. Am J Respir Crit Care Med. American Thoracic Society; 2005;№ 171 (12):1371–1377.

140. Chiu S., Kanter J., Sun H. et al. Effects of Hypercapnia in Lung Tissue Repair and Transplant. Curr Transplant Reports. Springer Science and Business Media LLC; 2015;№ 2 (1):98–103.

141. Dixon D.L., Barr H.A., Bersten A.D. et al. Intracellular storage of surfactant and proinflammatory cytokines in co-cultured alveolar epithelium and macrophages in response to increasing CO2 and cyclic cell stretch. Exp Lung Res. 2008;№ 34 (1):37–47.

142. Tobin M.J., editor. Principles and practice of mechanical ventilation [Internet]. 3rd ed. Chicago, Illinois: McGraw-Hill Medical; 2013.

143. Chatburn R.L., editor. Fundamentals of Mechanical Ventilation: A Short Course on the Theory and Application of Mechanical Ventilators. 1st ed. Cleveland Ohio: Mandu Press Ltd.; 2003.

144. Гриппи М.А. Патофизиология легких. Москва: Бином; 2001, 304 с.

145. Putensen C., Mutz N.J., Putensen-Himmer G. et al. Spontaneous breathing during ventilatory support improves ventilation-perfusion distributions in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med. 1999;№ 159 (4 Pt 1):1241–1248.

146. Putensen C., Muders T., Varelmann D. et al. The impact of spontaneous breathing during mechanical ventilation. Curr Opin Crit Care. Lippincott Williams and Wilkins; 2006;№ 12 (1):13–18.

147. Jung B., Nougaret S., Conseil M. et al. Sepsis is associated with a preferential diaphragmatic atrophy: A critically ill patient study using tridimensional computed tomography. Anesthesiology. Lippincott Williams and Wilkins; 2014;№ 120 (5):1182–1191.

148. Demoule A., Jung B., Prodanovic H. et al. Diaphragm dysfunction on admission to the intensive care unit: Prevalence, risk factors, and prognostic impact - A prospective study. Am J Respir Crit Care Med. 2013;№ 188 (2):213–219.

149. Jaber S., Petrof B.J., Jung B. et al. Rapidly progressive diaphragmatic weakness and injury during mechanical ventilation in humans. Am J Respir Crit Care Med. 2011;№ 183 (3):364–371.

150. Hudson M.B., Smuder A.J., Nelson W.B. et al. Both high level pressure support ventilation and controlled mechanical ventilation induce diaphragm dysfunction and atrophy. Crit Care Med. NIH Public Access; 2012;№ 40 (4):1254–1260.

151. Beitler J.R., Sands S.A., Loring S.H. et al. Quantifying unintended exposure to high tidal volumes from breath stacking dyssynchrony in ARDS: the BREATHE criteria. Intensive Care Med. Springer Verlag; 2016;№ 42 (9):1427–1436.

152. Pohlman M.C., McCallister K.E., Schweickert W.D. et al. Excessive tidal volume from breath stacking during lung-protective ventilation for acute lung injury. Crit Care Med. Lippincott Williams and Wilkins; 2008;№ 36 (11):3019–3023.

153. Thille A.W., Rodriguez P., Cabello B. et al. Patient-ventilator asynchrony during assisted mechanical ventilation. Intensive Care Med. 2006;№ 32 (10):1515–1522.

154. Yoshida T., Uchiyama A., Matsuura N. et al. The comparison of spontaneous breathing and muscle paralysis in two different severities of experimental lung injury. Crit Care Med. 2013;№ 41 (2):536–545.

155. Yoshida T., Uchiyama A., Matsuura N. et al. Spontaneous breathing during lung-protective ventilation in an experimental acute lung injury model: High transpulmonary pressure associated with strong spontaneous breathing effort may worsen lung injury. Crit Care Med. 2012;№ 40 (5):1578–1585.

156. Xirouchaki N., Kondili E., Vaporidi K. et al. Proportional assist ventilation with load-adjustable gain factors in critically ill patients: Comparison with pressure support. Intensive Care Med. 2008;№ 34 (11):2026–2034.

157. Kondili E., Prinianakis G., Alexopoulou C. et al. Respiratory load compensation during mechanical ventilation - Proportional assist ventilation with load-adjustable gain factors versus pressure support. Intensive Care Med. 2006;№ 32 (5):692–699.

158. Грицан А.И., Екименко Л.Н., Стекина А.В. и др. Случай успешного применения неинвазивной вентиляции у больного с тяжелой внебольничной двусторонней пневмонией и острым повреждением легких // Научные тезисы XII съезда Федерации анестезиологов и реаниматологов, Москва, 19-22 сентября 2010 года. с.122-123.

159. Lellouche F., Dionne S., Simard S. et al. High tidal volumes in mechanically ventilated patients increase organ dysfunction after cardiac surgery. Anesthesiology. 2012;№ 116 (5):1072–1082.

160. Serpa Neto A., Cardoso S.O., Manetta J.A. et al. Association Between Use of Lung-Protective Ventilation With Lower Tidal Volumes and Clinical Outcomes Among Patients Without Acute Respiratory Distress Syndrome. JAMA. 2012;№ 308 (16):1651.

161. MacIntyre N.R. Evidence-based guidelines for weaning and discontinuing ventilatory support: A collective task force facilitated by the American college of chest physicians; the American association for respiratory care; and the American college of critical medicine. Chest. 2001.

162. Kacmarek R.M., Kirmse M., Nishimura M. et al. The effects of applied vs auto-PEEP on local lung unit pressure and volume in a four-unit lung model. Chest. American College of Chest Physicians; 1995;№ 108 (4):1073–1079.

163. Froese A.B., Bryan A.C. Effects of anesthesia and paralysis on diaphragmatic mechanics in man. Anesthesiology. 1974;№ 41 (3):242–255.

164. van Haren F., Pham T., Brochard L. et al. Spontaneous Breathing in Early Acute Respiratory Distress Syndrome: Insights From the Large Observational Study to UNderstand the Global Impact of Severe Acute Respiratory FailurE Study. Crit Care Med. NLM (Medline); 2019;№ 47 (2):229–238.

165. Thille A.W., Cabello B., Galia F. et al. Reduction of patient-ventilator asynchrony by reducing tidal volume during pressure-support ventilation. Intensive Care Med. 2008;№ 34 (8):1477–1486.

166. Prinianakis G., Kondili E., Georgopoulos D. Effects of the flow waveform method of triggering and cycling on patient-ventilator interaction during pressure support. Intensive Care Med. 2003;№ 29 (11):1950–1959.

167. Leung P., Jubran A., Tobin M.J. Comparison of assisted ventilator modes on triggering, patient effort, and dyspnea. Am J Respir Crit Care Med. American Thoracic Society; 1997;№ 155 (6):1940–1948.

168. Thille A.W., Lyazidi A., Richard J.C.M. et al. A bench study of intensive-care-unit ventilators: New versus old and turbine-based versus compressed gas-based ventilators. Intensive Care Med. 2009;№ 35 (8):1368–1376.

169. Sassoon C.S.H. Triggering of the ventilator in patient-ventilator interactions. Respir Care. 2011;№ 56 (1):39–48.

170. Papazian L., Forel J.-M., Gacouin A. et al. Neuromuscular Blockers in Early Acute Respiratory Distress Syndrome. N Engl J Med. 2010;№ 363 (12):1107–1116.

171. Gainnier M., Roch A., Forel J.M. et al. Effect of neuromuscular blocking agents on gas exchange in patients presenting with acute respiratory distress syndrome. Crit Care Med. Lippincott Williams and Wilkins; 2004;№ 32 (1):113–119.

172. Forel J.M., Roch A., Marin V. et al. Neuromuscular blocking agents decrease inflammatory response in patients presenting with acute respiratory distress syndrome. Crit Care Med. 2006;№ 34 (11):2749–2757.

173. Yoshida T., Uchiyama A., Matsuura N. et al. Spontaneous breathing during lung-protective ventilation in an experimental acute lung injury model. Crit Care Med. 2012;№ 40 (5):1578–1585.

174. Caramez M.P., Kacmarek R.M., Helmy M. et al. A comparison of methods to identify open-lung PEEP. Intensive Care Med. NIH Public Access; 2009;№ 35 (4):740–747.

175. Suzumura E.A., Amato M.B.P., Cavalcanti A.B. Understanding recruitment maneuvers. Intensive Care Med. 2016;№ 42 (5):908–911.

176. Gattinoni L., Caironi P., Cressoni M. et al. Lung Recruitment in Patients with the Acute Respiratory Distress Syndrome. N Engl J Med. 2006;№ 354 (17):1775–1786.

177. Mercat A., Richard J.-C.C., Vielle B. et al. Positive end-expiratory pressure setting in adults with acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA. 2008;№ 299 (6):646–655.

178. Talmor D., Sarge T., Malhotra A. et al. Mechanical Ventilation Guided by Esophageal Pressure in Acute Lung Injury. N Engl J Med. Massachusetts Medical Society; 2008;№ 359 (20):2095–2104.

179. Cavalcanti A.B., Suzumura É.A., Laranjeira L.N. et al. Effect of Lung Recruitment and Titrated Positive End-Expiratory Pressure (PEEP) vs Low PEEP on Mortality in Patients With Acute Respiratory Distress Syndrome. JAMA. 2017;№ 318 (14):1335.

180. Oba Y., Thameem D.M., Zaza T. High levels of PEEP may improve survival in acute respiratory distress syndrome: A meta-analysis. Respir Med. 2009;№ 103 (8):1174–1181.

181. Phoenix S.I., Paravastu S., Columb M. et al. Does a Higher Positive End Expiratory Pressure Decrease Mortality in Acute Respiratory Distress Syndrome? Anesthesiology. 2009;№ 110 (5):1098–1105.

182. Briel M., Meade M., Mercat A. et al. Higher vs Lower Positive End-Expiratory Pressure in Patients With Acute Lung Injury and Acute Respiratory Distress Syndrome. JAMA. American Medical Association; 2010;№ 303 (9):865.

183. Guo L., Xie J., Huang Y. et al. Higher PEEP improves outcomes in ARDS patients with clinically objective positive oxygenation response to PEEP: A systematic review and meta-analysis. BMC Anesthesiol. BioMed Central Ltd.; 2018;№ 18 (1):172.

184. Храпов К.Н. Респираторная поддержка при тяжелой пневмонии : диссертация... д-ра мед. наук : 14.01.20 / С-Пб. 2011.

185. Власенко А.В., Мороз В.В., Яковлев В.Н. и др. Выбор способа оптимизации ПДКВ у больных с острым респираторным дистресс-синдромом. Общая реаниматология. FSBI SRIGR RAMS; 2012;№ VIII (1):13–21.

186. Borges J.B., Okamoto V.N., Matos G.F.J. et al. Reversibility of lung collapse and hypoxemia in early acute respiratory distress syndrome. Am J Respir Crit Care Med. 2006;№ 174 (3):268–278.

187. Bouhemad B., Brisson H., Le-Guen M. et al. Bedside Ultrasound Assessment of Positive End-Expiratory Pressure–induced Lung Recruitment. Am J Respir Crit Care Med. 2011;№ 183 (3):341–347.

188. Tusman G., Acosta C.M., Costantini M. Ultrasonography for the assessment of lung recruitment maneuvers. Crit Ultrasound J. 2016;№ 8 (1):8.

189. Николаенко Э.М. Управление функцией легких в ранний период после протезирования клапанов сердца : автореферат дис.... доктора медицинских наук : 14.00.41; 14.00.37 / НИИ трансплантологии и искусств. органов. М. 1989.

190. Заболотских И.Б., Лебединский К.М., Анисимов М.А. и др. Периоперационное ведение больных с сопутствующим морбидным ожирением (второй пересмотр). Клинические рекомендации. Тольяттинский медицинский консилиум. 2016; (5–6):38–56.

191. Chiumello D., Cressoni M., Colombo A. et al. The assessment of transpulmonary pressure in mechanically ventilated ARDS patients. Intensive Care Med. 2014;№ 40 (11):1670–1678.

192. Gattinoni L., Bombino M., Pelosi P. et al. Lung structure and function in different stages of severe adult respiratory distress syndrome. JAMA. 1994;№ 271 (22):1772–1779.

193. Musch G., Bellani G., Vidal Melo M.F. et al. Relation between shunt, aeration, and perfusion in experimental acute lung injury. Am J Respir Crit Care Med. 2008;№ 177 (3):292–300.

194. Зайратьянц О.В., Черняев А.Л., Чучалин А.Г. Патоморфология легких при тяжелой форме гриппа A(H1N1). Анестезиология и реаниматология. 2010; (3): с.25–29.

195. Reske A.W., Reske A.P., Gast H.A. et al. Extrapolation from ten sections can make CT-based quantification of lung aeration more practicable. Intensive Care Med. 2010;№ 36 (11):1836–1844.

196. Jonson B., Richard J., Straus C. et al. Pressure-volume curves and compliance in acute lung injury: evidence of recruitment above the lower inflection point. Am J Respir Crit Care Med. 1999;№ 159 (4):1172–1178.

197. Dellamonica J., Lerolle N., Sargentini C. et al. PEEP-induced changes in lung volume in acute respiratory distress syndrome. Two methods to estimate alveolar recruitment. Intensive Care Med. 2011;№ 37 (10):1595–1604.

198. Ручина Е.В., Шарнин А.В., Лебединский К.М. и др. Оценка функциональной остаточной емкости легких и показателя потребления кислорода во время настройки уровня ПДКВ. Анестезиология и реаниматология. 2013; (3): с.51–54.

199. Smetkin A.A., Kuzkov V. V, Suborov E. V et al. Increased Extravascular Lung Water Reduces the Efficacy of Alveolar Recruitment Maneuver in Acute Respiratory Distress Syndrome. Crit Care Res Pract. 2012;606528.

200. Власенко А.В., Остапченко Д.А., Шестаков Д.А. и др. Эффективность применения маневра «открытия легких» в условиях ИВЛ у больных с острым респираторным дистресс-синдромом. Общая реаниматология. 2006;№ 2 (4): с.59.

201. Ranieri V.M., Giuliani R., Fiore T. et al. Volume-Pressure Curve of the Respiratory System Predicts Effects of PEEP in ARDS: “Occlusion” versus “Constant Flow” Technique. Am J Respir Crit Care Med. 1994;№ 149 (1):19–27.

202. Chiumello D., Gattinoni L. Stress index in presence of pleural effusion: Does it have any meaning? Intensive Care Med. 2011;№ 37 (4):561–563.

203. Adams A.B., Cakar N., Marini J.J. Static and dynamic pressure-volume curves reflect different aspects of respiratory system mechanics in experimental acute respiratory distress syndrome. Respir Care. 2001;№ 46 (7):686–693.

204. Kárason S., Søndergaard S., Lundin S. et al. A new method for non-invasive, manoeuvre-free determination of “static” pressure-volume curves during dynamic/therapeutic mechanical ventilation. Acta Anaesthesiol Scand. 2000;№ 44:578–585.

205. Kárason S., Søndergaard S., Lundin S. et al. Continuous on-line measurements of respiratory system, lung and chest wall mechanics during mechanic ventilation. Intensive Care Med. 2001;№ 27 (8):1328–1339.

206. Frerichs I., Amato M.B.P., Van Kaam A.H. et al. Chest electrical impedance tomography examination, data analysis, terminology, clinical use and recommendations: Consensus statement of the TRanslational EIT developmeNt stuDy group. Thorax. 2017.

207. Gattinoni L., Mascheroni D., Torresin A. et al. Morphological response to positive end expiratory pressure in acute respiratory failure. Computerized tomography study. Intensive Care Med. 1986;№ 12 (3):137–142.

208. Kunst P.W., Vazquez de Anda G., Bohm S.H. et al. Monitoring of recruitment and derecruitment by electrical impedance tomography in a model of acute lung injury. Crit Care Med. 2000;№ 28 (12):3891–3895.

209. Gattinoni L., Pesenti A., Avalli L. et al. Pressure-Volume Curve of Total Respiratory System in Acute Respiratory Failure: Computed Tomographic Scan Study. Am Rev Respir Dis. 1987;№ 136 (3):730–736.

210. Hickling K.G. Best compliance during a decremental, but not incremental, positive end-expiratory pressure trial is related to open-lung positive end-expiratory pressure: A mathematical model of acute respiratory distress syndrome lungs. Am J Respir Crit Care Med. 2001;№ 163 (1):69–78.

211. Jonson B., Svantesson C. Elastic pressure-volume curves: what information do they convey? Thorax. BMJ Publishing Group Ltd and British Thoracic Society; 1999;№ 54 (1):82–87.

212. Mehta A., Bhagat R. Preventing Ventilator-Associated Infections. Clin Chest Med. 2016;№ 37 (4):683–692.

213. Vassilakopoulos T. Understanding wasted/ineffective efforts in mechanically ventilated COPD patients using the Campbell diagram. Intensive Care Med. 2008;№ 34 (7):1336–1339.

214. Carney DE, Bredenberg CE, Schiller HJ, Picone AL M.U., Gatto LA et al. The Mechanism of Lung Volume Change during Mechanical Ventilation. Am J Respir Crit Care Med. American Thoracic SocietyNew York, NY; 1999;№ 160 (5):1697–1702.

215. Schiller H.J., Steinberg J., Halter J. et al. Alveolar inflation during generation of a quasi-static pressure/volume curve in the acutely injured lung. Crit Care Med. 2003;№ 31 (4):1126–1133.

216. Olegård C., Söndergaard S., Houltz E. et al. Estimation of functional residual capacity at the bedside using standard monitoring equipment: A modified nitrogen washout/washin technique requiring a small change of the inspired oxygen fraction. Anesth Analg. 2005;№ 101 (1):206–212.

217. Chiumello D., Cressoni M., Chierichetti M. et al. Nitrogen washout/washin, helium dilution and computed tomography in the assessment of end expiratory lung volume. Crit Care. 2008;№ 12 (6):R150.

218. Dreyfuss D., Hubmayr R. What the concept of VILI has taught us about ARDS management. Intensive Care Med. 2016;№ 42 (5):811–813.

219. Chiumello D., Carlesso E., Cadringher P. et al. Lung stress and strain during mechanical ventilation for acute respiratory distress syndrome. Am J Respir Crit Care Med. 2008;№ 178 (4):346–355.

220. Chiumello D., Colombo A., Algieri I. et al. Effect of body mass index in acute respiratory distress syndrome. Asai T, editor. Br J Anaesth. 2016;№ 116 (1):113–121.

221. Cortes-Puentes G.A., Gard K.E., Adams A.B. et al. Value and Limitations of Transpulmonary Pressure Calculations During Intra-Abdominal Hypertension. Crit Care Med. 2013;№ 41 (8):1870–1877.

222. Jakob S.M., Knuesel R., Tenhunen J.J. et al. Increasing abdominal pressure with and without PEEP: effects on intra-peritoneal, intra-organ and intra-vascular pressures. BMC Gastroenterol. BioMed Central; 2010;№ 10:70.

223. Lundin S., Grivans C., Stenqvist O. Transpulmonary pressure and lung elastance can be estimated by a PEEP-step manoeuvre. Acta Anaesthesiol Scand. 2015;№ 59 (2):185–196.

224. Papavramidis T.S., Marinis A.D., Pliakos I. et al. Abdominal compartment syndrome - Intra-abdominal hypertension: Defining, diagnosing, and managing. J emergencies, trauma Shock. Medknow Publications; 2011;№ 4 (2):279–291.

225. Pelosi P., Ravagnan I., Giurati G. et al. Positive end-expiratory pressure improves respiratory function in obese but not in normal subjects during anesthesia and paralysis. Anesthesiology. The American Society of Anesthesiologists; 1999;№ 91 (5):1221–1231.

226. Гельфанд Б.Р., Проценко Д.Н., Подачин П.В. и др. Синдром интраабдоминальной гипертензии: состояние проблемы. Современная медицинская наука. 2012; (2):4–26.

227. Эпштейн С.Л. Периоперационное анестезиологическое обеспечение больных с морбидным ожирением. Регионарная анестезия и лечение острой боли. 2012;№ 6 (3): с.5–27.

228. Fumagalli J., Berra L., Zhang C. et al. Transpulmonary Pressure Describes Lung Morphology During Decremental Positive End-Expiratory Pressure Trials in Obesity*. Crit Care Med. 2017;№ 45 (8):1374–1381.

229. Pelosi P., Vargas M. Mechanical ventilation and intra-abdominal hypertension: “Beyond Good and Evil.” Crit Care. 2012;№ 16 (6):187.

230. Amato M.B.P., Barbas C.S.V., Medeiros D.M. et al. Effect of a Protective-Ventilation Strategy on Mortality in the Acute Respiratory Distress Syndrome. N Engl J Med. Massachusetts Medical Society; 1998;№ 338 (6):347–354.

231. Villar J., Kacmarek R.M., Pérez-Méndez L. et al. A high positive end-expiratory pressure, low tidal volume ventilatory strategy improves outcome in persistent acute respiratory distress syndrome: A randomized, controlled trial*. Crit Care Med. 2006;№ 34 (5):1311–1318.

232. Мороз В.В., Власенко А.В., Яковлев В.Н. и др. Оптимизаия пдкв у больных с острым респираторным дистресс-синдромом, вызванным прямыми и непрямыми повреждающими факторами. Общая реаниматология. 2012;№ VIII (3): с.5–13.

233. Rezoagli E., Bellani G. How i set up positive end-expiratory pressure: Evidence- A nd physiology-based! Crit Care. BioMed Central Ltd.; 2019;№ 23 (1):412.

234. Sahetya S.K., Goligher E.C., Brower R.G. Fifty Years of Research in ARDS. Setting Positive End-Expiratory Pressure in Acute Respiratory Distress Syndrome. Am J Respir Crit Care Med. 2017;№ 195 (11):1429–1438.

235. Gattinoni L., Carlesso E., Brazzi L. et al. Friday night ventilation: A safety starting tool kit for mechanicall



Поделиться:


Последнее изменение этой страницы: 2021-04-12; просмотров: 35; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.224.33.107 (0.261 с.)