Департамент внутренней и кадровой политики белгородской области 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Департамент внутренней и кадровой политики белгородской области



ДЕПАРТАМЕНТ ВНУТРЕННЕЙ И КАДРОВОЙ ПОЛИТИКИ БЕЛГОРОДСКОЙ ОБЛАСТИ

ОБЛАСТНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ПРОФЕССИОНАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

«ГУБКИНСКИЙ ГОРНО-ПОЛИТЕХНИЧЕСКИЙ КОЛЛЕДЖ»

 

Контрольная работа

МДК.01.01. Электрические машины и аппараты

Тема «электрические аппараты»

Выполнил: Медведев Павел,

Группа ТЭМ-8т

Проверила: Канова Л.В.

Г. Губкин, 2020 г.

Основные конструкции контактов

Разновидности контактов

Существует 3 разновидности контактов:

неразъемный контакт (соединение двух шин болтом),

скользящий контакт (с помощью реостата) 

Коммутирующий контакт

По форме контакты бывают

· Точеные, они, в основном, используются для малых токов, при этих контактах происходит небольшое нажатие, а для того, чтобы уменьшить сопротивление контактов, применяются не окисляющиеся драгоценные металлы;

· Линейные, с большой степенью нажатия и контактированием по линии, для производства этих контактов используется медь;

· Поверхностные, применяются с большой степенью нажатия для контактирования при больших токах между двух поверхностей

Контакты бывают подвижные и неподвижные.

· Подвижные контакты в процессе работы замыкаются, соединяясь между собой, либо размыкаются, разъединяясь с помощью механического или электромеханического привода, при этом устройства между собой остаются надежно скреплены.

· В процессе работы неподвижных контактов, токоведущие надежно и плотно соединенные между собой элементы не перемещаются друг относительно друга.

Чтобы создать замкнутую электрическую цепь, нужно произвести несколько контактов.

· Рычажный контакт, рассчитанный на средние и большие токи, в котором в качестве материала применяется медь.

Рис.1.1 Кинематика движения контактов:

А — разомкнутые контакты, б — начальное касание контактов,

В — конечное положение контактов

· Шарнирный контакт, где неподвижный элемент и подвижный элемент соединяются между собой с помощью силы, воздействующей на рычаг, может служить еще одним примером подвижного контакта.

                     

 

Рис.1.2 Устройство шарнирного контакта

 

· Скользящие контакты — это еще одна разновидность подвижных контактов, у которых, как и в щеточноколлекторном устройстве электрических машин постоянного тока, один элемент перемещается относительно других.

 

· Герметизированные магнитоуправляемые контакты —представляет собой запаянную стеклянную колбу миниатюрного размера, с двумя плоскими впаянными контактными пружинами, состоящими из мягкой магнитной стали.

Рис.1.3 Устройство герметизированного магнитоуправляемого контакта

С помощью герконов можно производить коммутации в электрических цепях при малых значениях тока от 0,5 до 1А. Колбу геркона вакуумируют или заполняют инертным газом.

Элементы геркона имеют малую массу и высокое быстродействие контактов от 0,5 до 1,0 мс.

Износоустойчивость — это самое важное из свойство герконов. У некоторых видов герконов количество переключений может достичь до двух тысяч в секунду, а срабатываний до сотен миллионов.

Герсиконы — это герметические магнитоуправляемые силовые контакты, являющиеся разновидностью герконов, которые позволяют произвести коммутации в электрических цепях при значениях тока 60А, 100А или 180А и при напряжении 220 440В.

Если эти герметизированные магнитоуправляемые контакты (герконы) поместить в созданное обмоткой или постоянным магнитом магнитное поле, то их пружины будут намагничиваться и затем притягиваться друг к другу.

В это время происходит замыкание контактов и, как следствие, может замкнуться электрическая цепь. Контакты из-за силы упругости пружин разомкнутся только после полного исчезновения магнитного поля. Поверхности пружин на контактах покрываются тонким слоем драгоценного металла, имеющего малое удельное электрическое сопротивление (платина, золото, серебро).

2. Реле тепловое серии ТРН

Тепловое реле - электрический аппарат, предназначенный для защиты электродвигателя от токовых перегрузок. Наиболее распространёнными типами тепловых реле являются ТРН, ТРП, РТТ и РТЛ.Срок службы электрооборудования в значительной степени напрямую зависит от перегрузок, воздействующих на него при работе оборудования. Для любого оборудования довольно просто найти зависимость времени протекания тока от его величины, при котором достигается длительная и надежная эксплуатация оборудования.
При номинальных токах допустимое время его протекания равно бесконечности. Протекание токов больше номинального приводит к повышению рабочих температур и значительному сокращению срока службы в первую очередь за счет износа изоляции. Вследствие этого, чем больше перегрузки, тем меньше должно быть время их воздействия.

Идеальная защита оборудования - зависимость tср (I) для тепловых реле проходит ниже кривой для защищаемого оборудования.

Наиболее широкое распространение получило тепловое реле с биметаллической пластиной для защиты от перегрузки.

Биметаллическая пластина, используемая в тепловом реле, состоит из пластин имеющих различный температурный коэффициент расширения (одна - больший, другая - меньший). В местах прилегания пластины жестко крепятся друг к другу за счет горячего проката или сварки. При нагревании неподвижной биметаллической пластины происходит изгиб ее в сторону части с меньшим коэффициентом расширения. Именно данное свойство используется при работе теплового реле.
Также широко применяются пластины, состоящие из инвара (меньший коэффициент) и хромоникелевой или немагнитной стали (больший коэффициент).
Нагрев пластины теплового реле происходит за счет выделяемого тепла при протекании тока нагрузки через биметаллическую пластину. Зачастую используется нагревательный элемент, по которому также протекает ток нагрузки. Наилучшие характеристики имеют комбинированные тепловые реле, в которых ток нагрузки протекает и через биметаллическую пластину и через нагревательный элемент. При нагревании биметаллическая пластина тепловых реле воздействует на контактную систему своей свободной частью.

Выбор теплового реле.

Номинальный ток выбираемого теплового реле выбирается исходя из номинальных нагрузок защищаемого оборудования (электродвигателя). Ток выбираемого теплового реле должен составлять 1,2 - 1,3 от номинального тока электродвигателя (ток нагрузки), то есть тепловое реле срабатывает при 20 - 30 % перегрузке на протяжении 20 минут.

Значение времени нагрева электродвигателя напрямую зависит от длительности перегрузок. В случае кратковременной перегрузки нагреваются лишь обмотки электродвигателя и время нагрева составляет от 5 до 10 минут. При длительных перегрузках в нагреве участвует вся конструкция двигателя, и время составляет от 40 до 60 минут. Поэтому наиболее целесообразным считается применение теплового реле в схемах, где время включения электродвигателя превышает 30 минут.

Установка реле тепловых ТРН

При монтаже реле тепловых ТРН каждый полюс прибора необходимо включить последовательно в одну из фаз основной цепи. При этом для установок постоянного тока рекомендуется последовательное включение обоих полюсов в главную цепь, а контакт цепи управления подключается к управлению исполнительного прибора таким образом, чтобы между срабатыванием теплового реле и обесточиванием главной цепи был временной промежуток не более 0,5 секунд. В противном случае велик риск повреждения реле.

Даже если прибор находится далеко от источников пыли, воды и различных загрязнений, рекомендуется ежемесячно производить его технический осмотр и очистку. Это позволит значительно повысить срок эксплуатации теплового реле.

 

а — общий вид
; б — схема теплового реле

 

Рис.2.1 Схема устройства теплового реле типа ТПН

А — общий вид; б — схема теплового реле; 1 — нагреватель; 2 — биметаллическая пластинка; 3 — регулировочный винт; 4 — защелка; 5 — рычаг; 6 — пружина; 7 — кнопка возврата; 8 — подвижный контакт; 9 — неподвижный контакт; 10 — вывод нагревателя

Выключатели нагрузки

Выключатель нагрузки - это простейший высоковольтный выключатель. Он используется для отключения и включения цепей, находящихся под нагрузкой. Дугогасительные устройства выключателей рассчитаны на гашение маломощной дуги, возникающей при отключении тока нагрузки. Их нельзя применять для отключения токов К.З. Чтобы разорвать цепь в случае возникновения К.З., последовательно с выключением нагрузки устанавливаются высоковольтные предохранители соответствующей способности. Выключатели нагрузки заменили дорогостоящие высоковольтные выключатели. Дорого стоит не только высоковольтный выключатель, но и привод к нему. Кроме того, чтобы управлять работой выключателя, необходима система релейной защиты, трансформаторы тока и напряжения. Если ток сети относительно небольшой, 400...600 А, целесообразно выключатель с релейной защитой заменить на выключатель нагрузки с предохранителями. В выключателях нагрузки для гашения дуги используются камеры с автогазовым, автопневматическим, электромагнитным, элегазовым дутьём и вакуумными элементами.

При автогазовом дутье гашение дуги осуществляется выделяющимися под действием температуры дуги из стенок камеры газами. В качестве материала камер используется винипласт, оргстекло и другие газогенерующие материалы. Выключатель нагрузки с автопневматическим дутьём является небольшим воздушным выключателем. Для гашения дуги у таких выключателей образование сжатого воздуха осуществляется за счёт энергии отключающей пружины. Принцип его действия аналогичен принципу поддува электромагнитного выключателя.

Когда используется в выключателях нагрузки элегазовое дутьё, то дугогасительная камера заполняется газом при давлении в две атмосферы. При отключениях дугу омывает поток газа, создаваемый поршневым устройством. Движение подвижного контакта поршневого устройства осуществляется энергией отключающей пружины. Серийно выпускаются выключатели нагрузки с элегазовым дутьём на напряжение до 35...110 кВ.

До настоящего времени в основном использовались выключатели нагрузки с автодутьём. Общий вид такого выключателя типа ВН-16 показан на рис.1, а. Полюса выключателя смонтированы на одной раме. Вводы полюсов размещены на нижнем опорном изоляторе. Там же расположен шарнир подвижного контакта 1. Выводы полюсов выполнены на верхнем изоляторе. Верхний изолятор служит основанием для неподвижного основного контакта 2 и дугогасительной камеры 5. Для уменьшения контактного сопротивления подвижный контакт 1 сдвоен. Дугогасительный контакт 4 расположен между пластинами подвижного контакта 1. Пластины выполнены из стали. Вал 3 с помощью тяги соединён с подвижными контактами, которым они приводятся в движение. Отключает выключатель пружина 6, которая взводится при включении аппарата. Дугогасительная камера выключателя представлена на рис.1, б.

В ней расположен неподвижный дугогасительный контакт точечного типа. Он соединён с главным неподвижным контактом 2. Корпус камеры выполнен из пластмассы. Он представляет две половины, скреплённые винтами. Внутри корпуса имеются вкладыши 8, выполненные из газогенерирующего материала. При включении дугогасительный контакт 4, выполненный в виде ножа, входит в щель дугогасительной камеры и соединяется с дугогасительными контактами 7. Главные контакты 1 и 2 замыкаются после дугогасительных 4 и 7. Когда наступает процесс отключения, сначала размыкаются рабочие контакты, а после дугогасительные. Дуга, горящая между вкладышами 8, втягивается внутрь щели дугогасительной камеры. Под действием температуры дуги из вкладышей 8 выделяются газы. В результате давление внутри камеры повышается. Если подвижный дугогасительный контакт 4 находится в камере, то газы из камеры выходят только через зазор между подвижным контактом и вкладышами 8. Происходит продольный обдув дуги. Сопротивление дуги возрастает, дуга гаснет. Когда на одной общей раме смонтирован выключатель типа ВН-16 и высоковольтный предохранитель ПК, то образованной установке приписывается тип ВНП-16

Рис.3.1 Автогазовый выключатель нагрузки

Аналогичный комбинированный электроаппарат, но имеющий дополнительно приспособление для автоматического отключения выключателя нагрузки, позволяет отказаться от разъединителя. Выпускаются выключатели с заземляющими ножами. Их тип ВНПЗ-16(17). Ножи заземления снабжаются валом, приваренными контактами в виде медных пластин, блокирующим устройством. Ножи могут заземлять только верхние или нижние контактные стойки выключателя, поэтому устанавливаются сверху или снизу выключателя. Вал заземляющих ножей через блокировку связан с валом выключателя. Блокировка не позволяет включить ножи заземления при включённом выключателе и включить выключатель при включённых ножах заземления. Ножи заземления можно включать и отключать только при отключённом выключателе. Чтобы осуществлять управление ножами заземления, используется отдельный привод типа ПР-2. Может применяться ручной привод. Привод ножей устанавливают со стороны, противоположной приводу выключателя.

Выключатели нагрузки с автогазовым дутьём при напряжении 10 кВ могут отключать токи 200 А 75 раз, а в случае тока 400 А - только 3 раза. Невысокая надёжность выключателей, малое число отключений номинального тока, ограниченная включающая способность и электродинамическая стойкость потребовали разработки новых видов выключателей нагрузки. Одним из них служит выключатель нагрузки электромагнитного типа. Он применяется при номинальных токах 630, 400 А и соответственно номинальных напряжениях 6, 10 кВ. У таких выключателей повышенные токи отключения больше номинальных в 1,5 раза, а предельные сквозные токи составляют амплитудное значение 51 кА, действующее значение периодической составляющей 20 кА. Выключатель оборудован пружинным приводом с ручным заводом и дистанционным управлением.

Вакуумные выключатели, имеющие малые габариты и вес, обладающие высокими эксплутационными возможностями, успешно применяются в качестве выключателей нагрузки. Так выключатель серии ВНВЛ-10/400 рассчитан на напряжение 10 кВ и номинальный ток 400 А.

Рис. 3.2 Элегазовый выключатель нагрузки

Элегазовые выключатели нагрузки применяются на напряжение 110 кВ и выше. На напряжение 110...220 кВ они имеют гасительные камеры, в которых полем постоянных магнитов дуга приводится во вращение. Конструктивная схема выключателя представлена на рис.2. Его полюса состоят из полых опорных изоляторов 1 и гасительных камер 2. В них расположена контактная система. Внутренние полости камер и изоляторов заполнены элегазом. Давление газа составляет 0,3 МПа. Контакт 3 приводится в движение штангой 4. Штанга соединяется со стержнем 5. Сильфон 6 предназначен для уплотнения при переходе стержня через фланец опорного изолятора. Основание 7 полюсов выключателя общее. Ход контактов 100 мм. Полюса между собой связаны приводным механизмом. Выключатель может быть использован в качестве отделителя. Тогда предусматривается короткозамыкатель 8. Отделитель и короткозамыкатель снабжены приводом 9 и 10. Камера выключателя на 110 кВ разработана в виде модуля для выключателей более высокого напряжения. В выключателе на 220 кВ две камеры. Они включены последовательно.

Рис. 3.3 Привод типа ПРА-12 к выключателю нагрузки

ДЕПАРТАМЕНТ ВНУТРЕННЕЙ И КАДРОВОЙ ПОЛИТИКИ БЕЛГОРОДСКОЙ ОБЛАСТИ

ОБЛАСТНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ПРОФЕССИОНАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

«ГУБКИНСКИЙ ГОРНО-ПОЛИТЕХНИЧЕСКИЙ КОЛЛЕДЖ»

 

Контрольная работа



Поделиться:


Последнее изменение этой страницы: 2021-04-12; просмотров: 55; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.189.2.122 (0.025 с.)