Изучение состава, строения, состояния и свойств грунтов 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Изучение состава, строения, состояния и свойств грунтов



Изучение состава, строения, состояния и свойств грунтов выполняется параллельно с изучением геологического строения массива, но может являться и самостоятельной целью и выполняться по специально составленной программе.

Определение физико-механических характеристик грунтов по данным геофизических исследований следует производить на основе корреляционных зависимостей, установленных для определенных литологических разновидностей пород с учетом их региональных особенностей. При отсутствии корреляционных связей, полученных для грунтов изучаемого объекта (наиболее обоснованные оценки), могут быть использованы корреляционные зависимости для грунтов-аналогов (приближенные оценки). Примеры таких связей, полученных на основе обобщения данных экспериментальных исследований различных грунтов в лабораторных и натурных условиях, приведены в аналитической форме в приложении Е, и в графической форме в приложениях Ж-Н.

При определении физико-механических свойств грунтов в массиве на основе использования корреляционных связей, установленных при изучении образцов, следует учитывать масштабный эффект для конкретной геологической среды.

Определение литолого-петрографического состава пород. Решение задачи основано на зависимости электрических, упругих и других физических свойствах пород, определяемые при геофизических исследованиях, от их литолого-петрографического состава (приложения Ж, И). Установление зависимостей между геофизическими параметрами и литолого-петрографическими признаками состава грунтов проводится при использовании параметрических измерений в скважинах, горных выработках, на образцах и на обнажениях.

Основными геофизическими методами при решении задачи являются электроразведка на постоянном токе, ВЭЗ, ВЭЗ ВП, сейсморазведка МПВ на продольных и поперечных волнах. При наличии скважин используются ВСП, сейсмопросвечивание, различные виды каротажа.

Определение трещиноватости и пористости скальных пород. Решение задачи основано на различии скоростей распространения продольных и поперечных волн и электросопротивления в скальных породах при различной степени трещиноватости. С помощью сочетания сейсморазведки в наземном и скважинном вариантах с ультразвуковыми измерениями скоростей упругих волн в образцах (керне) скальных пород определяется общая пустотность (пористость) пород как в зоне аэрации, так и в зоне полного водонасыщения. Применение электроразведки требует установление корреляционных связей УЭС со степенью трещиноватости и пористости пород путем измерения электрических свойств пород в полевых условиях и в лаборатории на образцах.

Основными геофизическими методами при решении задачи является наземная сейсморазведка МПВ на продольных и поперечных волнах, скважинная сейсморазведка методами ВСП и просвечивания между скважинами, УЗК, измерения скоростей упругих волн в образцах пород. Вспомогательными методами являются электроразведка ВЭЗ и КВЭЗ.

Определение водно-физических свойств пород. Оценка коэффициента фильтрации дисперсных пород производится по корреляционным зависимостям между коэффициентом фильтрации пород и их удельным электрическим сопротивлением, а также поляризуемостью и диэлектрической проницаемостью, устанавливаемым для конкретных условий. В скальных породах такие зависимости устанавливаются между коэффициентом фильтрации и скоростью продольных волн.

Определение деформационных и прочностных свойств скальных пород. Задача решается, как правило, с помощью комплекса сейсмоакустических методов. Для определения статического модуля упругости, модуля деформации, предела прочности на одноосное сжатие используются установленные корреляционные зависимости между указанными параметрами с одной стороны и скоростями продольных и поперечных волн и динамическими модулями упругости - с другой (приложение Е).

Скорости упругих волн и, следовательно, упругие модули (с использованием информации о плотности пород в массиве) определяются: в скважинах методами сейсмоакустического каротажа и просвечивания, ВСП, с поверхности - сейсморазведкой МПВ на продольных и поперечных волнах, в лаборатории - путем измерения скоростей ультразвуковых волн в образцах.

Исследования в широком диапазоне частот позволяют учитывать масштабный эффект и обоснованно осуществлять переход от параметров, полученных на малых объемах грунтов, к параметрам изучаемого массива.

Определение физических свойств дисперсных пород (плотности, влажности, пористости). Основными методами определения плотности и влажности дисперсных пород (в том числе мерзлых) являются радиоизотопные измерения. Вспомогательными методами являются сейсморазведочные и электроразведочные, результаты которых используются для определения искомых параметров грунта по установленным корреляционным зависимостям между плотностью, влажностью и пористостью с одной стороны и скоростями упругих волн и электросопротивлением - с другой (приложения Е, Ж, И, Л).

В качестве основных методов используются каротажные методы ГГМ, ННМ, а в качестве косвенных - наземная и скважинная сейсморазведка на продольных и поперечных волнах (МПВ, ВСП, сейсмопросвечивание), а также электроразведка ВЭЗ, каротаж КС и РВП.

Определение прочностных и деформационных свойств дисперсных (талых и мерзлых) пород выполняется по установленным или уточненным и вновь устанавливаемым в процессе работ корреляционным зависимостям между указанными величинами и упругими параметрами: скоростями упругих волн, модулями упругости, сдвига, динамическим коэффициентом Пуассона (приложения Е, М).

Скорости продольных и поперечных волн пород в полевых условиях определяются с помощью наблюдений с поверхности и во внутренних точках среды методами МПВ, ВСП, СП. В лабораторных условиях используются ультразвуковые измерения на образцах.

Изучение строения скальных массивов, состоящих из разновеликих зон, блоков и элементов и степени их неоднородности выполняется с помощью разночастотных сейсмоакустических методов, позволяющих определять скорости продольных и поперечных волн для различных по размерам блоков и элементов массива. Для количественной оценки неоднородности строятся так называемые масштабные кривые, отражающие взаимосвязь между скоростями упругих волн и изучаемыми размерами (линейными или объемными) среды.

Скорости продольных и поперечных волн в массиве и его частях определяются с помощью наблюдений с поверхности, во внутренних точках среды и на образцах методами МПВ, ВСП, СП на частотах от 50-100 Гц до 10-20 кГц, а также с помощью ультразвуковых исследований.

Изучение степени неоднородности массивов дисперсных пород проводится путем построения кривых распределения скоростей упругих волн и характеристик их поглощения, а также электросопротивлений в зависимости от масштаба изучаемой среды. Методы получения упругих и электрических параметров стандартные - МПВ, ВСП, сейсмопросвечивание, ВЭЗ, РВП.

Изучение напряженного состояния пород основано на взаимосвязи параметров упругих волн со значениями действующих напряжений в массиве и на зависимости уровня акустической и электромагнитной эмиссии от изменений напряженного состояния массива. При качественном изучении напряженного состояния скальных и дисперсных пород используются МПВ, ВСП, сейсмопросвечивание, измерение акустической и электромагнитной эмиссии. Количественная оценка напряжений в массиве пород определяется с помощью комплекса разночастотных сейсмоакустических методов при использовании установленных зависимостей скоростей упругих волн от давления.

Оценка криогенного строения дисперсных пород производится по результатам определений упругих волн и электросопротивлений, измеренных в горизонтальной и вертикальной плоскостях. С помощью номограммы (приложение Н) оцениваются элементы криогенного строения. Скорости продольных волн для этой цели получают с помощью комплекса скважинных методов: ультразвуковой каротаж (УЗК) и межскважинное ультразвуковое просвечивание (МП). Для получения аналогичных значений электросопротивлений используется комплекс из наземного метода ВЭЗ и скважинного метода КС.

Определение коррозионной агрессивности (КА) грунтов и подземных вод выполняется с соблюдением требований ГОСТ 9.602-89. КА грунта по отношению к стали характеризуется значениями удельного электрического сопротивления (УЭС) грунта и средней плотностью катодного тока (iK). КА среды (грунта или воды) по отношению к свинцовой или алюминиевой оболочке кабеля, а также по отношению к бетонным сооружениям определяется по результатам химического анализа и по величине водородного показателя рН образцов. УЭС грунта определяется в полевых условиях и на образцах, плотность катодного тока - только на образцах грунта.



Поделиться:


Последнее изменение этой страницы: 2021-04-12; просмотров: 58; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.144.204.102 (0.006 с.)