Пояснения к рекомендуемым методам учета неадиабатического нагрева при расчете допустимых токов короткого замыкания 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Пояснения к рекомендуемым методам учета неадиабатического нагрева при расчете допустимых токов короткого замыкания



Тепловые потери в диэлектрике могут быть учтены через коэффициент, изменяющий подводимую энергию при коротком замыкании, либо максимально допустимую температуру. Выбран первый вариант, т.к. он позволяет сохранять постоянный предел температуры для материала, что предпочтительнее, чем его изменение из-за тепловых потерь в диэлектрике. Коэффициент ε определяется отношением подводимых энергий в адиабатическом и неадиабатическом режимах и, таким образом, непосредственно влияет на величину тока в жиле, поскольку продолжительность в обоих случаях одинакова.

В некоторых конкретных случаях (например, для систем с нейтралью, заземленной через импеданс) максимальный ток короткого замыкания известен, и рекомендуемый метод может быть преобразован для оценки максимальной температуры, которая будет достигнута при коротком замыкании.

(A) Токопроводящие жилы

Проведено значительное количество теоретических и экспериментальных исследований в области кабелей с медными токопроводящими жилами и поливинилхлоридной изоляцией, в то время как по кабелям с медными токопроводящими жилами и бумажной изоляцией имеется небольшое количество данных. Рекомендуемый в настоящем стандарте метод был основан на данных по кабелям с медными токопроводящими жилами и поливинилхлоридной изоляцией и затем экстраполирован на кабели другого типа. Такая экстраполяция была подтверждена имеющимися результатами нескольких испытаний кабелей с бумажной изоляцией.

Получено достаточное соответствие между результатами вычислений при помощи четырех независимых теоретических методов, метода расчета переходных характеристик при помощи компьютера (этот метод принят СИГРЭ для расчета номинальных характеристик в переходном режиме*) и данными экспериментальных исследований.

___________

* Electra, № 87, март 1983, стр. 41 [ 3 ].

Теоретические формулы имели следующий вид:

(A.1)

Полученная эмпирическим путем формула аналогичного вида соответствовала рассчитанной при помощи компьютера кривой для поливинилхлоридного пластиката. Эмпирические постоянные А и В включали удельные теплоемкости жилы и изоляции, а также удельное тепловое сопротивление изоляции. Путем модификации этих постоянных (используя значения, опубликованные в [ 1 ]) были получены кривые для других комбинаций материалов жилы и диэлектрика.

На практике имел место большой разброс результатов экспериментальных исследований, который объясняется неполным тепловым контактом между жилой и диэлектриком. Для учета данного обстоятельства в формулу (А.1) был введен коэффициент F, что также согласовывалось с теоретическими исследованиями. Коэффициент F = 0,7 соответствовал всем имеющимся экспериментальным данным для поливинилхлоридного пластиката и затем был использован для всех комбинаций материалов жилы и диэлектрика (за исключением маслонаполненных кабелей, для которых вследствие хорошего теплового контакта можно использовать коэффициент, равный 1,0). Возможные погрешности расчета учтены таким образом, чтобы повышалась безопасность кабелей.

Коэффициент ε в некоторой степени зависит от температуры, но в диапазоне температур, которые обычно имеют место на практике, эту зависимость можно не учитывать (она учтена в коэффициенте, равном 0,7).

Было принято, что 5 % - это минимальное увеличение допустимого тока короткого замыкания, которое может быть использовано на практике. При t / S <0,1 с/мм2 увеличение тока в жиле незначительное и неадиабатический метод не рекомендуется применять при данном соотношении, которое, вероятно, наиболее часто встречается в практике.

(B) Экраны и оболочки

Экраны и оболочки являются элементами конструкции кабелей, для которых увеличение допустимых токов короткого замыкания возможно в наибольшей степени в условиях неадиабатического характера нагрева.

Рассматривалось несколько методов расчета: аналитические и с использованием компьютера. Был выбран метод, представляющий собой упрощение теоретически наиболее точного метода, который непосредственно учитывает изменение потерь в зависимости от температуры.

Основной проблемой было недостаточное количество результатов экспериментальных исследований, необходимых для сравнения с данными расчета при помощи теоретического метода. Получено приемлемое соответствие с несколькими имеющимися результатами испытаний, особенно при введении коэффициента, учитывающего неполный тепловой контакт (так же, как для жилы). Кроме того, результаты испытаний, полученные методом с использованием компьютера (в соответствии с подразделом А), также соответствовали теоретическим данным.

Коэффициент ε и в этом случае в некоторой степени зависит от температуры, но в уравнении представлен наиболее неблагоприятный случай, и на практике эту зависимость можно не учитывать.

Коэффициент учета неполного теплового контакта выбран для различных конструкций оболочки и экрана в соответствии со степенью теплового контакта. Например, кабели с бумажной изоляцией, свинцовой оболочкой и битумным слоем под наружной оболочкой имеют весьма хороший контакт, а гофрированные алюминиевые оболочки кабелей с бумажной изоляцией, пропитанной нестекающим составом, имеют плохой контакт с изоляцией. Все допущения делались с учетом повышения безопасности кабелей.

Наиболее сложно было определить сопротивление и площадь поперечного сечения ленточных экранов, наложенных с перекрытием и многослойных. Сопротивление значительно зависит от степени контакта между витками ленты, который может случайным образом изменяться в течение срока службы кабеля и даже во время короткого замыкания. Поэтому принято допущение, обеспечивающее определенный запас, а именно: ток протекает вдоль ленты по спирали вокруг кабеля, а между витками нет электрического контакта. Поэтому используется геометрическая площадь поперечного сечения ленты (или лент). В этом случае получают заниженные номинальные значения характеристик кабеля для условий короткого замыкания, но они все же выше тех, которые определены на основе метода расчета при адиабатическом характере нагрева экранов при том же допущении отсутствия контакта между витками.

Аналогично допускается, что экраны в виде оплетки из проволок имеют трубчатую форму и не имеют контакта между проволоками. Площадь поперечного сечения в этом случае определяют как площадь поперечного сечения одной проволоки, умноженную на общее число проволок в оплетке, а за толщину принимают удвоенный диаметр одной проволоки.

Приложение В
(справочное)



Поделиться:


Последнее изменение этой страницы: 2021-04-12; просмотров: 38; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.224.0.25 (0.005 с.)