Вопрос 2 Стабилитронные интегральные микросхемы. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Вопрос 2 Стабилитронные интегральные микросхемы.



Для достижения свойственных стабилизатору 723 превосходных характеристик (стабильность Uоп 30·10-6 / °С) используется компенсированный стабилитрон. Стабилизатор 723 — вполне приличный источник опорного напряжения, и совместно с необходимыми навесными элементами эта ИМС может использоваться для получения стабильного источника с любым желательным напряжением.

Стабилизатор 723, применяемый в качестве опорного источника напряжения, служит примером «трехвыводного» опорного источника, т. е. источника, для работы которого нужен внешний источник питания; в схему источника входят цепь смещения стабилитрона и буферный усилитель выходного напряжения. К трехвыводным стабилитронным ИМС относятся превосходная LM369 фирмы National (1,5·10-6/°C тип.) и REF10KM фирмы Burr-Brown (температурный коэффициент не более 10-6/°С); в своих схемах мы часто используем недорогую ИМС Motorola MCI404 (которая фактически является UБЭ-стабилитроном). Вскоре мы более подробно рассмотрим трехвыводные источники опорного напряжения, а сейчас обратимся к двухвыводным. Прецизионные температурно-компенсированные стабилитронные ИМС выпускаются в виде двухвыводных устройств: с точки зрения внешних электрических соединений они выглядят просто как стабилитроны, хотя в действительности содержат еще ряд активных элементов для улучшения характеристик (наиболее существенная — постоянство стабилизированного напряжения при заданном токе).

Пример — недорогая схема LM329 с напряжением ~ 6,9 В. В лучшем варианте ее темп, коэффициент равен 6·10-6/°С (тип.), 10-5/°С (макс.) при постоянном токе 1 мА. Перечислим некоторые стабилитронные ИМС с необычными характеристиками: температурно-стабилизированная LM399 (0,3·10-6/°С тип.), микромощная LM385 (которая работает от тока, доходящего до 10 мкА) и выпускаемая фирмой Linear Technology ИМС LTZ1000 с ее потрясающими параметрами: типовой температурный коэффициент 0,05·10-6/°С, дрейф 0,3·10-6/месяц и низкочастотный шум 1,2 мкВ.

 К несчастью, стабилитронные ИМС, как и их дискретные аналоги, сильно шумят. Шум становится сильнее для стабилизаторов, использующих лавинный пробой, т. е. с напряжением стабилитрона больше 6 В. На рис. 2.1 показан график шума стабилитронного источника 723.

Этот шум связан с поверхностными эффектами и применение стабилитронной структуры с так называемым захороненным (скрытым) или подповерхностным слоем может сильно улучшить стабильность стабилитрона и существенно уменьшить его шум. Так, только что упоминавшийся источник опорного напряжения LTZ1000 на стабилитроне с захороненным слоем - самый совершенный из всех типов источников опорного напряжения. LM369 и REF10KM также имеют очень малый шум.

 

Рисунок 2.1 - Зависимость напряжения шумов малошумящего стабилитрона, подобного тому, который используется в стабилизаторе 723, от рабочего тока стабилитрона.

Вопрос 3. Источник опорного напряжения на UБЭ-стабилитроне.

Недавно стала получать распространение схема, известная под названием «стабилитрон с напряжением запрещенной зоны». Более точно было бы название «UБЭ -стабилитрон». Это легко понять, вспомнив формулу Эберса-Молла для диода. В основе схемы лежит идея генерации напряжения с температурным коэффициентом, положительным и равным по абсолютной величине отрицательному температурному коэффициенту напряжения UБЭ. При сложении этого напряжения с UБЭ получается напряжение с нулевым температурным коэффициентом.

 

 

Рисунок - 3.1- Токовое зеркало с двумя транзисторами

 

Начнем с рассмотрения токового зеркала с двумя транзисторами, работающими с разной плотностью эмиттерного тока (рис. 3.1), с обычным отношением плотностей тока порядка 10:1.

Применяя формулу Эберса-Молла, легко показать, что Iвых имеет положительный температурный коэффициент, так как разность напряжений UБЭ для двух транзисторов есть просто (kT / q)ln σ, где σ — отношение плотностей тока. Здесь может возникнуть вопрос: где взять постоянный задающий ток Iупр. Несколько позже мы покажем остроумный способ его получения. Сейчас вам надо только преобразовать этот ток в напряжение с помощью резистора и сложить с нормальным напряжением UБЭ. Такая схема показана на рис. 3.2.

 

Рисунок - 3.2 - Классическая схема источника опорного напряжения с напряжением запрещенной зоны полупроводника.

 

Резистор R2 устанавливает величину напряжения, которое складывается с UБЭ и имеет положительный температурный коэффициент. Подбирая должным образом величину R2, получаем нулевой результирующий температурный коэффициент. Оказывается, что температурный коэффициент будет нулевым, если суммарное напряжение равно напряжению запрещенной зоны кремния (при температуре абсолютного нуля), т. е. примерно 1,22 В. Часть схемы, обведенная пунктиром, является стабилитроном. Ее выход используется (через резистор R3) Для создания постоянного тока Iупр, который мы с самого начала считали существующим.

На рис. 3.3 показана другая весьма популярная схема стабилитрона «запрещенной зоны» (заменена обведенная часть схемы рис. 3.2).

 

 

Рисунок 3.3 - Схема стабилитрона «запрещенной зоны»

 

Т1 и Т2 - согласованная пара транзисторов, вынужденная благодаря обратной связи по разности напряжений коллекторов работать при отношении токов коллекторов 10:1. Разность напряжений UБЭ, равная (kT / q)ln 10, делает ток эмиттера Т2 пропорциональным температуре (разность напряжений приложена к резистору R1). Но поскольку коллекторный ток Т1 всегда в 10 раз больше этой величины, он также пропорционален Т. Поэтому суммарный эмиттерный ток пропорционален Τ и создает на резисторе R2 падение напряжения, имеющее положительный температурный коэффициент. Это падение напряжения может быть использовано в качестве выходного сигнала температурного датчика (мы об этом дальше упомянем). В данной схеме напряжение, снимаемое с резистора R2, складывается с напряжением UБЭ транзистора Т1 для получения стабильного опорного напряжения с нулевым температурным коэффициентом на базах транзисторов Т1 и Т2. «Опорные источники запрещенной зоны» существуют в самых разных вариантах, но для них всех характерно сложение напряжения UБЭ с напряжением, созданным парой транзисторов, работающих с некоторым заданным отношением плотностей токов.

ИМС опорных источников с напряжением запрещенной зоны.

Примером стабилитрона с напряжением запрещенной зоны является недорогая двухвыводная схема LM385-1.2, имеющая номинальное рабочее напряжение 1,235 В ± 1 % (ее собрат LM385-2.5 имеет встроенную схему для генерации 2,5 В), работоспособную при токах вплоть до столь малых значений как 10 мкА. Это много меньше, чем можно было бы требовать от любого стабилитрона, и это делает данные ИМС прекрасным образом подходящими для микромощных приборов. Столь низкое опорное напряжение (1,235 В) часто намного более удобная вещь, чем номинальное рабочее напряжение стабилитронов 5 В (вы можете встретить стабилитроны с номинальным напряжением 3,3 В, однако у них совершенно ужасные характеристики с очень плавным изгибом). Лучшие образцы из ряда LM385 гарантируют температурный коэффициент не хуже 30·10-6/°С и типичное значение динамического сопротивления 1 Ом при токе 100 мкА. Сравним эти величины с теми же параметрами стабилитрона 1N4370 на 2,4 В: температурный коэффициент 800·10-6/°С (тип.), динамическое сопротивление около 3000 Ом при токе 100 мкА, и одновременно при этом же токе «напряжение стабилизации» (определяемое в спецификации как 2,4 В при токе 20 мА) составляет около 1,1В! Когда вам нужно прецизионно стабильное напряжение, эти превосходные ИМС на UБЭ -стабилитроне кладут обычные стабилитроны на лопатки.

Если вы готовы выложить чуть больше денег, то сможете найти опорные источники на UБЭ -стабилитронах с превосходной стабильностью, например такие, как двухвыводной LT1029 или трехвыводной REF-43 (2,5 В, 3·10-6/°C макс). Последний тип, так же как и трехвыводные источники опорного напряжения на стабилитронах, нуждается в источнике питания постоянного тока.

Одним из интересных источников опорного напряжения является ИМС TL431C. Это недорогой источник опорного напряжения на «программируемом стабилитроне»; его схема включения показана на рис. 3.4. «Стабилитрон» включается, когда управляющее напряжение достигает 2,75 В («стабилитрон» сделан по схеме UБЭ); этот прибор по управляющему входу потребляет ток всего лишь в несколько микроампер и имеет температурный коэффициент выходного напряжения около 10-5/°С. При указанных на схеме значениях параметров на выходе получается стабилизированное напряжение 10 В. Эти приборы выпускаются в двухрядных корпусах мини-DIP и могут работать при токах до 100 мА.

Рисунок 3.4- Источник опорного напряжения на «программируемом стабилитроне»

 

Температурные датчики, использующие UБЭ. Предсказуемостью изменения UБЭ с температурой можно воспользоваться при создании ИМС для измерения температуры. Например, REF-02 помимо своей основной функции генерирует выходное напряжение, линейно изменяющееся с температурой. С помощью простых внешних схем можно получить выходное напряжение, сигнализирующее о температуре ИМС с точностью 1 % во всем «армейском» диапазоне (от -55 до +125 °C). Схема AD590, используемая как чисто температурный датчик, дает точный ток 1 мкА/К. Это двухвыводное устройство; к нему надо приложить напряжение (4-30 В) и можно измерять ток. LM334 также можно применять таким способом. Другие датчики, такие как LM35 и LM335, генерируют на выходе точное напряжение с крутизной +10 мВ/°С.

 



Поделиться:


Последнее изменение этой страницы: 2021-04-12; просмотров: 154; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.128.202.221 (0.01 с.)