![]() Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву ![]() Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Ознакомление с оборудованиемСодержание книги
Поиск на нашем сайте
Электронно-лучевые осциллографы предназначены для визуального наблюдения, измерения и регистрации электрических сигналов. Возможность наблюдения изменяющихся во времени сигналов делает осциллографы чрезвычайно удобными при определении различных амплитудных и временных параметров наблюдаемых сигналов. Электронно-лучевые осциллографы классифицируются по следующим группам: универсальные (общего применения), многоканальные и многолучевые, запоминающие, широкополосные (скоростные), стробоскопические и специальные. Универсальные электронно-лучевые осциллографы предназначены для осциллографирования и измерения параметров различных классов электрических сигналов в широком диапазоне амплитуд и частот (от 0 до 100 МГц) Многоканальные электронно-лучевые осциллографы позволяют получить на экране однолучевой электронно-лучевой трубки изображения одновременно двух и более сигналов. Многолучевые электронно-лучевые осциллографы (например, модель С1‑33) используют электронно-лучевые трубки, имеющие два и более электронных лучей, управляемых отдельно или совместно. Запоминающие электронно-лучевые осциллографы используют специальные запоминающие трубки, которые позволяют сохранять на определенное время исследуемый сигнал, в том числе однократный, для наблюдения, регистрации и дальнейшей его обработки. Основными характеристиками запоминающих осциллографов являются максимальная скорость записи и время воспроизведения, которые определяются, в основном, конструкцией электронно-лучевой трубки. Примерами данного типа электронно-лучевых осциллографов служат модели С8-13, С8-15. Широкополосные электронно-лучевые осциллографы предназначены для осциллографирования коротких импульсов (с длительностью фронтов менее 15нс) и используются в режиме реального времени или с преобразованием временного масштаба. Для регистрации сигналов нано- и пикосекундной длительности применяются специальные конструкции скоростных осциллографов на трубках бегущей волны, обладающих широкой полосой пропускания и повышенной чувствительностью. К широкополосным осциллографам относится модель С7-15 с полосой пропускания 5МГц. Стробоскопические электронно-лучевые осциллографы позволяют получить изображение импульсов нано- и пикосекундной длительности, малых уровней (менее 0.1 В) в реальном масштабе времени. Для получения такого изображения используется стробоскопический метод, сочетающий большую широкополосность и высокую чувствительность при осциллографировании повторяющихся импульсов. При этом в стробоскопических осциллографах используются обычные электронно-лучевые трубки. Примером таких осциллографов служит модель С7-13.
Специальные электронно-лучевые осциллографы предназначены для целевого применения (телевизионные измерения, для систем автоматическою контроля и управления и др.). За счет снижения универсальности (сужения класса исследуемых сигналов) специальные электронно-лучевые осциллографы обладают лучшими техническими характеристиками по сравнению с другими типами электронно-лучевых осциллографов: большой полосой пропускания, большой точностью измерения и др. В последнее время широкое распространение получили цифровые осциллографы, построенные на базе однокристальных микроконтроллеров. Цифровые осциллографы сочетают в себе положительные качества вышеперечисленных типов электронно-лучевых осциллографов. И, кроме того, имеют целый ряд других сервисных и технических преимуществ перед обычными осциллографами. К основным характеристикам осциллографов относятся коэффициент отклонения mu и полоса пропускания. Коэффициент отклонения mu определяется, как отношение напряжения входного сигнала U к отклонению луча ly (в делениях шкалы), вызванному этим напряжением:
У наиболее распространенных осциллографов коэффициент отклонения находится в диапазоне 50 мкВ/дел – 10 В/дел. Полоса пропускания – диапазон частот, в пределах которого коэффициент отклонения изменяется не более, чем на 30 % относительно его значения на некоторой средней (опорной) частоте. 1. Для низкочастотных осциллографов полоса пропускания находится в диапазоне от 0 до 1-5 МГц. 2. Для универсальных осциллографов верхняя частота достигает десятков МГц. 3. Для высокочастотных – сотен МГц. Для измерения импульсов сигналов важными являются параметры переходной характеристики: время нарастания переходной характеристики и максимальный выброс.
Коэффициент развертки mi – отношение времени D t к отклонению луча, вызванному напряжением развертки за это время:
Обычно осциллографы имеют широкий диапазон изменения коэффициента развертки. Например, осциллограф С1-65 имеет коэффициент развертки 0,01 мкс/дел – 0,05 с/дел. Основная погрешность измерения напряжения и основная погрешность измерения временных интервалов определяется максимально допускаемыми погрешностями измерения соответствующих параметров при подаче на вход осциллографа стандартного сигнала синусоидальной или прямоугольной формы. В зависимости от значений этих погрешностей выпускают осциллографы 4-х классов точности: 1, 2, 3, 4 – имеющих, соответственно, основные погрешности измерений, не превышающие 3, 5, 10, 12 %. Часто вместо основных погрешностей измерений нормируют основные погрешности коэффициента отклонений и коэффициента развертки, а также нелинейность отклонения и развертки. Осциллографы характеризуются и другими параметрами: Максимальным входным напряжением, размерами рабочей части экрана, потребляемой мощностью, габаритами, массой и др.
Указания по подготовке к проведению работы
Рисунок 1 – Лабораторный стенд
При подготовке к проведению лабораторной работы необходимо подключить специализированный генератор импульсов к осциллографу с помощью щупа, включить сетевое питание осциллографа и генератора импульсов и дать осциллографу прогреться в течение 10 мин.
Программа работы 1. Ознакомиться с работой электронно-лучевого осциллографа; 2. Получить задание у преподавателя (форма и частота сигнала); 3. Зарисовать осциллограмму и записать масштаб координатной сетки; 4. Определить амплитуду, размах, период и частоту электрического сигнала; 5. Обозначить на осциллограмме основные характеристики электрического сигнала (амплитуду и период); 6. Сделать выводы по работе.
|
||||||
Последнее изменение этой страницы: 2021-03-09; просмотров: 58; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.141.85.245 (0.013 с.) |