Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Вопрос 4. Проводники и диэлектрики в электрическом поле.Содержание книги
Поиск на нашем сайте
Электростатическое поле - эл.поле, образованное неподвижными электрическими зарядами. Свободные электроны - электроны, способные свободно перемещаться внутри проводника (в основном в металлах) под действием эл. поля; Свободные электроны возникают при образовании металлов: электроны с внешних оболочек атомов утрачивают связи с ядрами и начинают принадлежать всему проводнику- участвуют в тепловом движении и могут свободно перемещаться по всему проводнику. Электростатическое поле внутри проводника - внутри проводника электростатического поля нет (Е = 0), что справедливо для заряженного проводника и для незаряженного проводника, внесенного во внешнее электростатическое поле. Почему? - т.к. существует явление электростатической индукции, т.е. явление разделения зарядов в проводнике, внесенном в электростатическое поле (Евнешнее) с образованием нового электростатического поля (Евнутр.) внутри проводника. Внутри проводника оба поля (Евнешн. и Евнутр.) компенсируют друг друга, тогда внутри проводникаЕ = 0.Заряды можно разделить Электростатическая защита- металл. экран, внутри которого Е = 0, т.к. весь заряд будет сосредоточен на поверхности проводника. Вопросы для самоконтроля
Тема 20: Электроемкость. Конденсаторы План: 1. Электроемкость. 2. Конденсаторы. 3. Энергия заряженного конденсатора. 4. Применение конденсаторов. Вопрос 1. Электроемкость. Способность тел накапливать электрический заряд. Лейденская банка. Электроемкостью конденсатора называют величину, равную отношению величины заряда одной из пластин к напряжению между ними. Электроемкость обозначается .По определению . Единицей электроемкости является фарад (Ф). 1 фарад — это электроемкость такого конденсатора, напряжение между обкладками которого равно 1 вольту при сообщении обкладкам разноименных зарядов по 1 кулону. Вопрос 2. Конденсаторы. Обозначение. Работа в схемах. Конденсатор — это система двух проводников (обкладок), разделенных слоем диэлектрика, толщина которого мала по сравнению с размерами проводников. Так, например, две плоские металлические пластины, расположенные параллельно и разделенные диэлектриком, образуют плоский конденсатор Вопрос 3. Энергия заряженного конденсатора. Для накопления значительных количеств разноименных электрических зарядов применяются конденсаторы.. Если пластинам плоского конденсатора сообщить равные по модулю заряды противоположного знака, то напряженность между пластинами будет в два раза больше, чем напряженность одной пластины. Вне пластин напряженность равна нулю. — конденсатор постоянной емкости — конденсатор переменной емкости. Электроемкость плоского конденсатора (рис. 16) находится по формуле: где — электрическая постоянная, — диэлектрическая постоянная среды, — площадь обкладки конденсатора, — расстояние между обкладками (или толщина диэлектрика). Вопрос 4. Применение конденсаторов Существуют различные варианты классификации конденсаторов, используемых в электронных схемах. Чаще всего такие устройства разделяют на типы по виду используемого в них диэлектрика. По особенностям диэлектрика можно выделить следующие типы: с жидкими диэлектриками. вакуумные, в которых отсутствует диэлектрик. с твердым органическим диэлектриком.с газовым диэлектриком. электролитические или оксид-полупроводниковые с электролитом или оксидным металлическим слоем. с твердым неорганическим диэлектриком. Второй вариант классификации – по вероятности колебания величины ёмкости. По этой характеристике можно выделить следующие устройства: Переменные – которые могут менять ёмкость из-за воздействия напряжения или температурных условий. Постоянные – величина ёмкости не изменяется на протяжении срока службы. Подстроечные – с изменяемой ёмкостью, используемые для периодической или разовой подстройки схем. В телевизионной и радиотехнической аппаратуре – для реализации колебательных контуров, а также их блокировки и настройки. Также их используют для разделения цепей различной частоты, в выпрямительных фильтрах и т. д. В радиолокационных приборах – с целью формирования импульсов большой мощности. В телеграфии и телефонии – для разделения цепей постоянного и переменного токов, токов различной частоты, симметрирования кабелей, искро гашения контактов и прочее. В телемеханике и автоматике – с целью реализации датчиков емкостного принципа, разделения цепей пульсирующего и постоянного токов, искрогашения контактов, в тиратронных импульсных генераторах и т. д. В сфере счетных устройств – в специальных запоминающих устройствах. Вопросы для самоконтроля 1. Что такое электроемкость? 2. Единицы измерения электроемкости. 3. Что такое конденсаторы? 4. Виды конденсаторов. Обозначение на схемах
Тема 21: Постоянный электрический ток План: 1. Электрический ток. 2. Сила тока. 3. Закон Ома для участка цепи. 4. Сопротивление. Вопрос 1. Электрический ток. Направленное движение электрических зарядов (электронов, ионов). Действия электрического тока (тепловое, магнитное, химическое).Исторически принято, что направление тока совпадает с направлением движения положительных зарядов в проводнике. При этом, если единственными носителями тока являются отрицательно заряженные частицы (например, электроны в металле), то направление тока противоположно направлению движения заряженных частиц. Вопрос 2. Сила тока. Сила тока (I)- скалярная величина, равная отношению заряда q, прошедшего через поперечное сечение проводника, к промежутку времени t, в течение которого шел ток. Сила тока показывает, какой заряд проходит через поперечное сечение проводника за единицу времени. Единица измерения силы тока в системе СИ:[I] = 1 A (ампер) Вопрос 3. Закон Ома для участка цепи. Сила тока в цепи прямо пропорциональна напряжению и обратно пропорциональна сопротивлению. I=U/R,где I – сила тока,U – напряжение,R – сопротивление.Из формулы для закона Ома можно рассчитать также величины напряжения и сопротивления участка цепи: U=IR и R=U/I Правда, следует понимать, что в собранной цепи величина сопротивления некоторого участка цепи есть величина постоянная, поэтому при изменении силы тока будет изменяться только напряжение и наоборот. Для изменения сопротивления участка цепи следует собрать цепь заново. Расчет же требуемой величины сопротивления при сборке цепи можно произвести по закону Ома, исходя из предполагаемых значений силы тока и напряжения, которые будут пропущены через данный участок цепи. Вопрос 4. Сопротивление. Способность проводника противодействовать прохождению электрического тока. Электрическое сопротивление (R) - это физическая величина, численно равная отношению напряжения на концах проводника к силе тока, проходящего через проводник. Величину сопротивления для участка цепи можно определить из формулы закона Ома для участка цепи. Однако, сопротивление проводника не зависит от силы тока в цепи и напряжения, а определяется только формой, размерами и материалом проводника.где l - длина проводника (м), S - площадь поперечного сечения (кв.м),r (ро) - удельное сопротивление (Ом м). Удельное сопротивление - показывает, чему равно сопротивление проводника, выполненного из данного вещества, длиной в 1м и с поперечным сечением 1 м кв. Единица измерения удельного сопротивления в системе СИ: 1 Ом м Однако, на практике толщина проводов значительно меньше 1 м кв, поэтому чаще используют внесистемную единицу измерения удельного сопротивления: Единица измерения сопротивления в системе в СИ:[R] = 1 Ом Сопротивление проводника равно 1 Ом, если при разности потенциалов на его концах в 1 В, по нему протекает ток силой 1 А. Причиной наличия сопротивления у проводника является взаимодействие движущихся электронов с ионами кристаллической решетки проводника. Из-за различия в строении кристаллической решетки у проводников, выполненных из различных веществ, сопротивления их отличаются друг от друга. Существует физическая величина обратная сопротивлению - электрическая проводимость. Вопросы для самоконтроля
Тема 22: Электрические цепи. План: 1. Электрические цепи. 2. Последовательное и параллельное соединение проводников Вопрос 1. Электрические цепи. Электрическая цепь – это совокупность проводящих элементов, необходимых для протекания электрического тока. Провода, ключ, источник тока, амперметр, вольтметр, сопротивление. Схема. Электрическая цепь (далее − цепь) − совокупность электрических элементов, связанных проводами, ключами, электрическим и магнитным полями. Мы будем рассматривать цепи, содержащие элементы, указанные в таблице: Мы разделим их на линейные и нелинейные цепи. Линейные цепи состоят из линейных элементов. В таких цепях протекают постоянные токи. На элементах линейных цепей постоянные напряжения. Линейный элемент −элемент, вольт-амперная характеристика которого представлена прямой линией. Например, резистор и источник являются примерами линейных элементов. Нелинейные цепи содержат конденсатор и/или катушку индуктивности. В таких цепях могут протекать переменные токи и быть переменные напряжения. По содержанию тех или иных элементов можно ввести классификацию. Например, RC-цепи включают резисторы, конденсаторы и, возможно, источники. Условные обозначения провода и ключа показаны в таблице: Ключ − это простой выключатель. Он может как замыкать, так и размыкать две точки электрической цепи. Провод −это тонкий гибкий проводник. Обычно в задачах у него будет нулевое сопротивление. Вопрос 2. Последовательное и параллельное соединение проводников. Схема соединения. Формулы. Применение. Значение. Смешанное соединение. Последовательное соединение проводников— это такое соединение, при котором конец предыдущего проводника соединяется с началом только одного — следующего: При последовательном соединении соротивление равно сумме сопротивлений всех проводников (R = R1 + R2), сила тока остаётся постоянной (I = const) по закону сохранения заряда,а напряжение, как и сопротивление, равно сумме напряжений на каждом участке (U = U1 + U2).Параллельное соединение проводников— это такое соединение, при котором все проводники подключены между одной и той же парой точек (узлами):Узел — точка разветвления цепи, в которой соединяются не менее трёх проводников.Сила тока при параллельном соединении равна сумме сил тока на каждом проводнике (I = I1 + I2), напряжение остаётся постоянным (U = const). А вот с сопротивлением всё не так просто: сопротивление характеризует проводимость проводника, проводимость — величина, обратно пропорциональная сопротивлению (G = 1/R), измеряется в сименсах(1 См = 1 Ом-1) и при параллельном соединении равна сумме проводимостей всех проводников (G = G1 + G2), следовательно 1/R = 1/R1 + 1/R2. Смешанное соединение проводников Смешанное соединение проводников — это такое соединение, при котором некоторые проводники соединены последовательно, а некоторые — параллельно: Вопросы для самоконтроля
Тема 23: Закон Ома для полной цепи План занятия: 1. Работа и мощность постоянного тока. 2. Электродвижущая сила. 3. Закон Ома для полной цепи. Вопрос 1. Работа и мощность постоянного тока. Работа тока- это работа электрического поля по переносу электрических зарядов вдоль проводника; Работа тока на участке цепи равна произведению силы тока, напряжения и времени, в течение которого работа совершалась. Применяя формулу закона Ома для участка цепи, можно записать несколько вариантов формулы для расчета работы тока: системе СИ:ЗАКОН ДЖОУЛЯ –ЛЕНЦА При прохождении тока по проводнику проводник нагревается, и происходит теплообмен с окружающей средой, т.е. проводник отдает теплоту окружающим его телам. Количество теплоты, выделяемое проводником с током в окружающую среду, равно произведению квадрата силы тока, сопротивления проводника и времени прохождения тока по проводнику.По закону сохранения энергии количество теплоты, выделяемое проводником численно равно работе, которую совершает протекающий по проводнику ток за это же время. В системе СИ: [Q] = 1 Дж МОЩНОСТЬ ПОСТОЯННОГО ТОКА - отношение работы тока за время t к этому интервалу времени. В системе СИ: Вопрос 2. Электродвижущая сила. для существования тока в цепи необходим источник тока – устройство, в котором действуют сторонние силы (силы не электростатической природы), совершающие работу по разделению зарядов и поддерживающие постоянную разность потенциалов между концами остальной части цепи. Действие сторонних сил характеризуется физической величиной называемой электродвижущей силой - ЭДС источника численно равна работе по перемещению единичного положительного заряда внутри источника от его отрицательного полюса к положительному.Единица измерения в СИ [ ] = 1 В.При перемещении заряда q внутри источника тока сторонние силы совершают работу Астор = q Qвнеш = I2 R t = q I R - количество теплоты выделяющееся во внешней цепиQвнут = I2 r t = q I r - количество теплоты выделяющееся в источнике тока (где r - внутреннее сопротивление источника). Вопрос 3. Закон Ома для полной цепи. - сила тока в цепи пропорциональна действующей в цепи ЭДС и обратно пропорциональна сумме сопротивлений цепи и внутреннего сопротивления источника.- данное уравнение представляет собой закон Ома для полной цепи. Сумма сопротивлений R + r называется полным сопротивлением цепи. При помощи полного закона Ома для полной цепи можно вычислить общие значения напряжения на клеммах источника электропитания, общий ток (потребляемый этой цепью) и суммарное сопротивление всей цепи. А что же делать, если нам необходимо узнать эти основные электрические характеристики в определённых частях цепи? Применить этот закон к конкретной части цепи (выбросив из формулы внутреннее сопротивление источника электропитания): I=U⁄R Любую электрическую схему (любой сложности) можно представить в виде простых путей, по которым перемещаются электроны. Взяв любой такой участок и определив его двумя точками, к нему смело можно применять закон Ома. На этих точках будет своё падение напряжения, своё внутреннее сопротивление и свой ток. Зная значения любых двух характеристик, по закону Ома всегда можно вычислить третье. Вопросы для самоконтроля
Тема 24: Полупроводники План: 1. Электрический ток в полупроводниках. 2. Полупроводниковые приборы. Вопрос 1. Электрический ток в полупроводниках. Полупроводники - вещества, удельное сопротивление которых с увеличением температуры резко уменьшается. кремний (Si), германий (Ge), сульфид серебра (PbS), сульфид кадмия (CdS) На внешней оболочке атома имеется четыре электрона, слабо связанных с ядром. Взаимодействие пары соседних атомов осуществляется с помощью парно электронной связи (ковалентной).Парно электронные связи кремния достаточно прочны и при низких температурах не разрываются. Поэтому при низких температурах кремний не проводит электрический ток. При нагревании полупроводника (Si) кинетическая энергия валентных электронов повышается и наступает разрыв отдельных связей, образуя при этом свободный электрон и дырку - вакантное место. В электрическом поле они (свободные электроны и дырки) перемещаются между узлами решётки, образуя электрический ток. Проводимость полупроводников, обусловленную наличием у них свободных электронов, называют электронной проводимостью, а проводимость, обусловленную наличием у них дырок, называют дырочной проводимостью. При нагревании от 300 до 700 К число свободных носителей заряда увеличивается от 1017 до 1024 м-3. Это приводит к уменьшению сопротивления. Собственная проводимость полупроводников обычно невелика, т.к. мало число свободных электронов. Проводимость полупроводников зависит от примесей. Изменяя концентрацию примеси, можно значительно менять число носителей заряда того или иного знака. Полупроводники n - типа. Примесь атомов мышьяка (As) элемента V группы, даже при очень малой концентрации резко увеличивает число свободных электронов в полупроводнике. Примеси, легко отдающие электроны, называют донорными (отдающими) примесями. Полупроводники, имеющие донорные примеси, обладают большим числом электронов (по сравнению с числом дырок), их называют полупроводниками n - типа (от слова negativ - отрицательный). В полупроводниках n - типа электроны являются основными носителями заряда, а дырки - не основными носителями заряда. Полупроводники p - типа. Такого рода примеси называют акцепторными (принимающими) примесями. Полупроводники, имеющие акцепторные примеси, обладают большим числом дырок (по сравнению с числом электронов), их называют полупроводниками p - типа (от слова positiv - положительный). В полупроводнике p - типа дырки являются основными носителями заряда, а электроны - неосновными носителями заряда. Вопрос 2.Полупроводниковые приборы. Вся бытовая, научная, военная, космическая техника работает на полупроводниках. Диоды, транзисторы, микросхемы. Полупроводниковый фотоэлемент состоит из кремниевого кристалла n-типа, в котором путём добавления примесей создана p-область на концах p-n–перехода самостоятельно возникают разноимённые заряды. То есть его можно рассматривать как источник кратковременного тока. Если же к p-n–переходу постоянно подводить световую энергию получится постоянно действующий источник с напряжением около 1 В. Полупроводниковый термоэлемент состоит из двух полупроводников p-типа и n-типа, не образующих p-n–переход Они соединены металлической пластиной, к которой подводится тепло от Другие концы полупроводников касаются отдельных металлических контактов, которые охлаждают воздухом или другим способом В более холодных частях полупроводников уменьшается количество свободных электронов и дырок, так как при более низкой температуре «примесные» электроны реже покидают атомы, значит, и реже образуются дырки. Вопросы для самоконтроля
Тема 25: Магнитное поле. План: 1. Магнитное поле. 2. Индукция магнитного поля. Вопрос 1. Магнитное поле. Его материальность (опыт с магнитной стрелкой, компасом, магнитом)Магнитное поле порождается электрическим током (движущимися зарядами). Магнитное поле обнаруживается по действию на ток (движущиеся заряды). Магнитное поле непрерывно и неограниченно. Магнитное поле существует реально и не зависит от нашего сознания. Действие магнитного поля может быть больше или меньше. Магнитное поле зависит от силы и направления электрического тока. Магнитные явления известны людям с глубокой древности. Еще древние греки знали, что существует особый минерал, способный притягивать железные предметы. Это был один из минералов железной руды, который сейчас известен как магнетит.. вокруг движущихся электрических зарядов, существует магнитное поле. Магнитное поле — это особый вид материи, посредством которой осуществляется взаимодействие между движущимися электрически заряженными частицами. Магнитное поле можно обнаружить и исследовать с помощью железных опилок, магнитной стрелки. Проводники, подводящие ток к контуру, должны быть расположены вблизи друг друга или сплетены между собой, тогда их магнитные поля взаимно компенсируются. магнитное поле оказывает на контур с током ориентирующее действие. За направление магнитного поля принимают направление от южного полюса к северному по оси свободно установившейся в магнитном поле стрелки.
|
||||
Последнее изменение этой страницы: 2021-02-07; просмотров: 129; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.191.192.109 (0.014 с.) |