Общая математическая модель динамики 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Общая математическая модель динамики



Класс систем, которые можно считать безинерционными, весьма узок. Необходимо строить математические модели систем, выход которых определяется не только значением входа в данный момент времени, но и теми значениями, которые были на входе в предыдущие моменты. В наиболее общей модели это достигается введением понятия состояния системы как некоторой внутренней характеристики, значение которой в настоящий момент времени определяет текущее значение выходной величины. Обозначим это состояние через z(t). Сказанное выше означает существование такого отображения

η: Z × T → Y, что y(t) = η[t, z(t)]

Явная зависимость от t введена для учета возможности изменения зависимости выхода от состояния с течением времени. Это отображение называется отображением выхода.

Для завершения построения модели нужно описать связь между входом и состоянием, т.е. ввести параметрическое семейство отображений

μα: Z × X() → Z,

заданных для всех значений параметров

t ∈ T, τ ∈T и τ ≤ t

Это означает принятие аксиомы о том, что состояние в любой момент t однозначно определяется состоянием z и отрезком реализации входа х()

z(t) = μα[Zτ, X()] = σ[t, τ, Zτ, X()].

Такое отображение называется переходным отображением.

Итак, математическая модель системы, соответствующая уровню «белого ящика», — это задание множества входов, состояний и выходов, и связей между ними:

X →σ Z →η Y

Конкретизируя множества X, Z и Y и отображения можно перейти к содержательным моделям различных систем. Говорят о дискретных или непрерывных по времени системах в зависимости от того, дискретно или непрерывно множество Т. Далее, если множества X, Z и Y дискретной по времени системы имеет конечное число элементов, то такую систему называют конечным автоматом. Это довольно простой класс систем в том смысле, что для исследования конечных автоматов необходимы лишь методы логики и алгебры. В то же время это широкий и практически важный класс, так как в него входят все дискретные (цифровые) измерительные, управляющие и вычислительные устройства.

Если X, Z и Y — линейные пространства, а есть- линейные операторы, то и система называется линейной. Если к линейной системе предъявить дополнительные требования, состоящие в том, чтобы пространства имели топологическую структуру, а отображения были непрерывны в этой топологии, то мы приходим к гладким системам. Не вдаваясь в математические подробности, отметим, что задание топологической структуры множества позволяет строго определить основные понятия анализа на этом множестве, например сходимость последовательностей на нем, а так же вводить метрику (меру близости между элементами пространства).

Стационарные системы

Большой интерес на практике представляют стационарные системы, т.е. системы, свойства которых не изменяются со временем. Стационарность означает независимость от времени t и инвариантность функции к сдвигу во времени:

h[t, z(t)] = h[z(t)],

σ[t, t0, z, x(.)] = σ[t+τ0, t0+τ, z,xτ(.)].

Конкретизация моделей динамических систем на этом, конечно, не заканчивается. Приведенные модели скорее всего являются просто примерами, которые можно рассматривать отдельно. Но на одном свойстве реальных динамических систем следует остановиться. Речь идет о подчинении реальных систем принципу причинности. Согласно этому принципу, отклик системы на некоторое воздействие не может начаться раньше самого воздействия. Это условие, очевидное для реальных систем, совсем не автоматически выполняется в рамках их математических моделей. При этом модель, в которой нарушается принцип причинности, совсем не является «плохой», бесполезной. Примером служит модель фильтра с конечной полосой пропускания. Отклик такой системы на короткий импульс имеет вид Sin(wt)/(wt), т.е. начинается в минус бесконечности. Несмотря на явное нарушение принципа причинности, такую модель широко используют в радиотехнике. Однако, как только возникает вопрос о практической реализации такого фильтра, используются различные допущения. В связи с этим одна из проблем теории динамических систем состоит в выяснении условий физической реализуемости теоретических моделей, т.е. конкретных ограничений, которые приходится накладывать на модель при соблюдении принципа причинности.

Подведем итог

Оказывается, что при всем многообразии реальных систем принципиально различных типов моделей систем очень не много: модель типа «черный ящик», модель состава, модель структуры, а также их разумные сочетания и прежде всего объединения всех трех типов моделей, т.е. структурная схема системы. Это относится как к статическим моделям, отображающим фиксированное состояние системы, так и к динамическим моделям, отображающим характер временных процессов, которые происходят с системой.

Все указанные типы моделей являются формальными, относящимися к любым системам и, следовательно, не относящимися ни к одной конкретной системе. Чтобы получить модель заданной системы, нужно придать формальной модели конкретное содержание, т.е. решить, какие аспекты реальной системы включать как элементы модели, а какие — нет. Этот процесс обычно неформализуем, поскольку признаки существенности не удается формализовать. Столь же слабо формализованными являются признаки элементарности и разграничения между подсистемами.

В силу сказанного, процесс построения содержательных моделей является процессом интеллектуальным, творческим. Тем не менее эксперту, разрабатывающему содержательную модель, помогают формальная модель и рекомендации по ее наполнению конкретным содержанием.



Поделиться:


Последнее изменение этой страницы: 2021-02-07; просмотров: 171; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.143.239.231 (0.008 с.)