Синтез полимеров в предбиологических условиях 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Синтез полимеров в предбиологических условиях



Образование основных мономеров белков и нуклеиновых кислот из газов протосолнечной туманности — это только первый шаг в создании генетической системы. Чтобы сформировать необходимые полимеры, мономеры должны затем соединиться в цепочки. Это трудная проблема, и, хотя на нее обращается пристальное внимание, пока еще не предложено надежных способов образования полимеров, несущих генетическую информацию, из мономеров, существовавших, вероятно, на примитивной Земле.

Синтез полимеров как в живых системах, так и в лаборатории включает в себя этап присоединения очередного мономера к концу растущей цепи. На каждом таком этапе потребляется энергия и происходит выделение молекулы воды. При синтезе белков из аминокислот связь, образующаяся между мономерными звеньями полимера, называется пептидной. На рисунке показана схема образования пептидной связи между двумя молекулами аминокислот.

 

 

Буквой R обозначена любая из 20 различных боковых цепей белковых аминокислот. Когда третья молекула аминокислоты прикрепляется к концу дипептида, образуется трипептид и т. д., пока не сформируется полипептид. Такие реакции обратимы: например, дипептид, показанный выше, может, присоединив молекулу воды, вновь превратиться в аминокислоты: этот процесс сопровождается выделением энергии. Белковая молекула представляет собой полипептидную цепь с определенной последовательностью аминокислот, которая придает ей особые свойства и является продуктом длительной эволюции. Каждая цепь состоит из сотен соединенных в одну последовательность аминокислот, а молекулы некоторых белков включают две и более подобных цепей. В результате взаимодействия между составляющими их аминокислотами полипептиды формируют трехмерную структуру, которая и является активной формой белковой молекулы.

Полимеризация нуклеотидов, повторяющихся мономерных звеньев нуклеиновых кислот, приводит к образованию полинуклеотидов, или нуклеиновых кислот. Образование динуклеотида из двух нуклеотидов выглядит следующим образом:

 

 

Здесь буквой В обозначено любое из четырех оснований ДНК или РНК; цепочки из атомов углерода (С) соответствуют пятиуглеродному сахару с — ОН-группой, связанной с третьим атомом углерода. (Истинные циклические обозначения структуры углеводов приведены ранее на рис. 1.) Фосфорная кислота присоединена сначала к пятому атому углерода, а затем к углеродным атомам 5 и 3.

Для синтеза полимеров — как белков, так и нуклеиновых кислот — живые клетки вырабатывают богатые энергией молекулы, которые с помощью специфических белков-ферментов обеспечивают энергией каждый этап присоединения мономера. Помимо того что ферменты катализируют соответствующие реакции, они создают условия, необходимые для нормального ее протекания, устраняя все другие мешающие молекулы. Это существенно в случае, когда нужные для реакции молекулы составляют лишь небольшую часть из всех присутствующих в реакционной среде. Удаляются, например, молекулы воды, которые неизменно мешают протеканию реакции дегидратации.

Биологические полимеры могут быть синтезированы в лабораторных условиях и без участия ферментов. Синтез полипептидов и полинуклеотидов стал теперь обычным делом. Белки, идентичные тем, которые синтезируются клеткой, могут быть получены и получаются в лаборатории. При этом используют безводные растворители, очищенные мономеры высокой концентрации, прибегают к разного рода ухищрениям для защиты реакционных групп и применяют реагенты, обеспечивающие реакции энергией, что в сущности соответствует функциям, выполняемым обычно ферментами.

Попробуем сопоставить эти два высокосовершенных способа синтеза биополимеров — реализуемых в клетке и в лаборатории — с условиями, по-видимому, существовавшими на примитивной Земле. Единственным растворителем тогда была вода, необходимые для синтеза мономеры составляли лишь часть общего количества растворенных органических и неорганических веществ, реагенты, имевшиеся в достаточном количестве, были, вероятно, довольно просты, и, разумеется, полностью отсутствовали ферменты. До сих пор не ясно, как при столь неблагоприятных условиях могли образоваться даже короткие полимеры. По всей видимости, первобытный бульон состоял из множества самых разнообразных органических соединений. Чтобы произошел синтез полипептида или полинуклеотида, в бульоне должна была возникнуть особая группа соединений, которые сконцентрировались бы и соединились друг с другом. Представить себе этот первый этап, наверное, особенно трудно. Простой концентрации первичного бульона здесь явно недостаточно. Скорее всего, этот бульон представлял собой сложную смесь многих соединений, которые должны были мешать образованию полимеров, прикрепляясь, например, к концу растущей цепи и останавливая тем самым ее рост.

 

Фото 1. Туманность в созвездии Орион. Гигантские массы газа и пыли, которые окружают центральную звезду в группе, образующей "меч" Ориона, — еще одна иллюстрация распространенности во Вселенной водорода. Излучение нескольких "горячих" звезд в этой туманности вызывает свечение окружающих их газов на определенных, характерных для них частотах. Красный цвет на фотографии соответствует свечению водорода, голубой-кислорода и азота, белый — смеси газов. (© Калифорнийский технологический институт, 1959 г.)

 

Фото 3. Большое Красное Пятно — долгоживущее образование в атмосфере Юпитера, окруженное турбулентной облачностью. (Фотография получена космической станцией "Вояджер"; НАСА и Лаборатория реактивного движения.)

 

Фото 4. На фотографии северного полушария Сатурна, сделанной

 

 

 

 

Фото 8. Озерцо Дон Жуан в Антарктиде. (Фото Роя Кэмерона.)

 

 

Возможное решение этой проблемы связано с адсорбцией необходимых молекул на поверхности глинистых минералов. Этому механизму особое значение придавал покойный Дж. Д. Бернал (1901–1971), известный английский ученый-кристаллограф. По сравнению с органическими соединениями глинистые минералы обладают большой адсорбционной способностью. Кроме того, они по-разному взаимодействуют с различными типами соединений, которые адсорбируют. Сам Бернал не был уверен в правильности своего предположения; это объяснялось тем, что кремний, основной составляющий элемент глин, не играет почти никакой роли в современной биохимии. Тем не менее адсорбция считается самым вероятным механизмом (хотя это и не доказано) предбиологических процессов разделения и концентрации.

Несмотря на сомнения Бернала, другие ученые без колебаний отвели глинистым минералам главную роль в происхождении жизни. В самом деле, А. Г. Кернс-Смит, химик из университета в Глазго, предположил, что жизнь началась с кристаллов, образующих минералы. Обладая способностью воспроизводить себе подобных, неорганические кристаллы как бы демонстрируют тем самым зачаточные генетические свойства. У них обнаруживается также ограниченная способность к мутациям, которая проявляется в том, что в регулярном расположении атомов в кристалле могут возникать дефекты. Такие обладающие слоистой структурой минералы, как глины, склонны копировать дефекты одного слоя в структуре следующего, что можно рассматривать как своеобразную генетическую память. Замечено, что дефекты в структуре кристаллических граней часто оказываются участками химической активности, включая катализ. Кернс-Смит высказал предположение, что такое простое органическое соединение, как формальдегид, синтез которого мог катализироваться минералом, несущим подобный дефект, обладало способностью ускорять процесс воспроизведения дефектного кристалла и повышать точность копирования, в результате чего численность таких кристаллов по сравнению с другими типами быстро возрастала. С этого началась эволюция белково-нуклеиновой генетической системы, которая в дальнейшем отделилась от своего минерального предка. Однако это весьма умозрительное предположение, не имеющее почти никаких экспериментальных подтверждений.

При всех немалых трудностях, связанных с пониманием условий возникновения первых биологически важных полимеров, следует иметь в виду некоторые "смягчающие обстоятельства". Вполне возможно, что для построения первой генетической системы сначала потребовались не большие, сложно организованные молекулы, которые мы находим в современных организмах, а только короткие полимеры. Первому организму не обязательно следовало быть высокоэффективным. Поскольку его жизнь протекала в "райских кущах" при отсутствии врагов и проблем, связанных с добыванием пищи, ему достаточно было просто способности довольно быстро воспроизводить самого себя, чтобы опережать свою собственную химическую деградацию. Кроме того, химические процессы, предшествовавшие появлению жизни, протекали широко как в пространстве, так и во времени. В течение сотен миллионов лет примитивная Земля представляла собой грандиозную лабораторию, где в силу гигантских масштабов происходящего могли реализоваться даже такие процессы, которые кажутся нам маловероятными.

Такие соображения, конечно, не дают нам права утверждать, что мы понимаем, как образовались первые биополимеры. Однако они позволяют предполагать, что проблема, по-видимому, не столь трудна, как считается. Последние результаты, полученные в лаборатории Оргела, показали возможность образования полинуклеотидов на исходной полинуклеотидной цепи способом, аналогичным естественной дупликации генов, но без участия фермента. Этого замечательного результата удалось достичь благодаря тому, что был найден метод введения в реакцию энергии: несмотря на отсутствие ферментов, этот метод сходен с естественным механизмом, с помощью которого клетка обеспечивает энергией синтез полинуклеотидов. Эти данные делают более правдоподобным предположение, что аналогичный процесс мог играть важную роль на ранних стадиях эволюции генетической системы. Кроме того, недавно было доказано, что некоторые виды РНК обладают каталитическими свойствами, которые обычно приписывались только белкам. Все эти результаты позволяют предположить, что примитивная генетическая система могла быть построена без белков — лишь из одной РНК. Если это было действительно так, то загадки, связанные с происхождением жизни, значительно упрощаются.

Проблемы, касающиеся появления первой молекулы нуклеиновой кислоты, генетического кода и всего механизма переноса информации от нуклеиновых кислот к белкам, по-прежнему остаются нерешенными, однако и здесь заметен некоторый прогресс, насколько это позволяет современный уровень знаний. Поэтому, заканчивая наш краткий обзор современных представлений о природе и происхождении жизни на пашей планете, мы обходимся без претенциозных рассуждений о возникновении "первичной протоплазменной первобытно-атомной глобулы". Нет сомнений, что движение вперед, к решению проблемы происхождения жизни, будет продолжаться. Между тем изложенные нами принципы имеют настолько общий характер, что вполне применимы к проблемам возникновения жизни в любой области Вселенной. Теперь мы обратимся к обсуждению вопросов о жизни на других планетах Солнечной системы — этот предмет и составляет содержание остальных глав нашей книги.

 

Глава 4. Есть ли жизнь на других планетах?

 

Тем не менее большинство планет, несомненно, обитаемы, а необитаемые со временем будут населены.

Таким образом, я могу все изложенное выше выразить в следующем общем виде: вещество, из которого состоят обитатели различных планет, в том числе животные и растения из них, вообще должно быть тем легче и тоньше… чем дальше планеты отстоят от Солнца. Совершенство мыслящих существ, быстрота их представлений… становятся тем прекраснее и совершеннее, чем дальше от Солнца находится небесное тело, на котором они обитают.

Так как степень вероятия этой зависимости настолько велика, что она близка к полной достоверности, то перед нами открывается простор для любопытных предположений, основанных на сравнении свойств обитателей различных планет.

Иммануил Кант. "Всеобщая естественная история и теория неба" [II]

 

В XVII–XVIII вв. люди были убеждены, что планеты Солнечной системы обитаемы. Христиан Гюйгенс (1629–1695), которого по праву можно считать одним из основателей современной астрономии, полагал, что на Меркурии, Марсе, Юпитере и Сатурне есть поля, "согреваемые добрым теплом Солнца и орошаемые плодотворными росами и ливнями". В полях, думал Гюйгенс, обитают растения и животные. В противном случае эти планеты "были бы хуже нашей Земли", что он считал абсолютно неприемлемым. Такой довод, столь странно звучащий в наши дни, основывался на развитых Коперником представлениях об окружающем мире, согласно которым Земля не занимает особого места среди планет, и Гюйгенс разделял эти взгляды. По той же причине он полагал, что на планетах должны жить разумные существа, "возможно, не в точности такие люди, как мы сами, но живые существа или какие-то иные создания, наделенные разумом". Подобное заключение казалось Гюйгенсу настолько бесспорным, что он писал: "Если я ошибаюсь в этом, то уже и не знаю, когда могу доверять своему разуму, и мне остается довольствоваться ролью жалкого судьи при истинной оценке вещей".

Хотя Гюйгенс и заблуждался в данном вопросе (оказалось, что другие планеты все же намного "хуже" Земли, по крайней мере как место существования жизни), его репутация ученого от этого не пострадала. Его гений был всеобъемлющим, а открытия в области математики, механики, астрономии и оптики заложили основы современной науки. Для нас же урок заключается в том, что, когда речь идет о проблеме существования внеземной жизни, даже самые талантливые ученые могут идти по ложному пути.

Как можно судить по эпиграфу к настоящей главе, мало что изменилось в этих представлениях и столетие спустя. Иммануил Кант не только был убежден в том, что на планетах может и должна существовать жизнь, но и верил, что уровень организации их обитателей повышается по мере удаления планеты от Солнца.

Конечно, в XVII–XVIII вв. о планетах было известно немного, а о природе жизни еще меньше. Примерно в то же время, когда Гюйгенс обосновывал возможность существования внеземной жизни, Франческо Реди доказал, что животные не способны к самозарождению, и, таким образом, сделал еще один шаг к пониманию сущности жизни. Все это происходило задолго до того, как биологи и планетологи обрели способность реально оценивать пригодность планет для жизни. Как мы узнаем из этой и следующей глав, к 1975 г., времени полета космического аппарата "Викинг", из всех планет, известных Гюйгенсу и его современникам, только Марс продолжали считать возможным местом существования внеземной жизни.

 

 

Критерии обитаемости планет

 

Температура и давление

Если наше предположение о том, что жизнь должна быть основана на химии углерода, правильно, то можно точно установить предельные условия для любой среды, способной поддерживать жизнь. Прежде всего температура не должна превышать предела стабильности органических молекул. Определить предельную температуру нелегко, но для нашей цели не требуется точных цифр. Поскольку температурные эффекты и величина давления взаимозависимы, их следует рассматривать в совокупности. Приняв давление равным примерно 1 атм (как на поверхности Земли), можно оценить верхний температурный предел жизни, учитывая, что многие небольшие молекулы, из которых построена генетическая система, например аминокислоты, быстро разрушаются при температуре 200–300 °C. Исходя из этого, можно заключить. что области с температурой выше 25 °C необитаемы. (Из этого, однако, не следует, что жизнь определяется только аминокислотами, мы выбрали их лишь в качестве типичных представителей малых органических молекул.) Реальный температурный предел жизни почти наверняка должен быть ниже указанного, поскольку большие молекулы со сложной трехмерной структурой, в частности белки, построенные из аминокислот, как правило, более чувствительны к нагреванию, чем небольшие молекулы. Для жизни на поверхности Земли верхний температурный предел близок к 10 °C, и некоторые виды бактерий при этих условиях могут выживать в горячих источниках. Однако подавляющее большинство организмов при такой температуре гибнет.

Может показаться странным, что верхний температурный предел жизни близок к точке кипения воды. Не обусловлено ли это совпадение именно тем обстоятельством, что жидкая вода не может существовать при температуре выше точки своего кипения (10 °C на земной поверхности), а не какими- то особыми свойствами самой живой материи?

Много лет назад Томас Д. Брок, специалист по термофильным бактериям, высказал предположение, что жизнь может быть обнаружена везде, где существует жидкая вода, независимо от ее температуры. Чтобы поднять точку кипения воды, нужно увеличить давление, как это происходит, например, в герметической кастрюле-скороварке. Усиленный подогрев заставляет воду кипеть быстрее, не меняя ее температуры. Естественные условия, в которых жидкая вода существует при температуре выше ее обычной точки кипения, обнаружены в районах подводной геотермальной активности, где перегретая вода изливается из земных недр под совместным действием атмосферного давления и давления слоя океанской воды. В 1982 г. К. О. Стеттер обнаружил на глубине до 10 м в зоне геотермальной активности бактерии, для которых оптимальная температура развития составляла 105 °C. Так как давление под водой на глубине 10 м равняется 1 атм, общее давление на этой глубине достигало 2 атм. Температура кипения воды при таком давлении равна 121 °C.

Действительно, измерения показали, что температура воды в этом месте составляла 103 °C. Следовательно, жизнь возможна и при температурах выше нормальной точки кипения воды[11].

Очевидно, бактерии, способные существовать при температурах около 10 °C, обладают "секретом", которого лишены обычные организмы. Поскольку эти термофильные формы при низких температурах растут плохо либо вообще не растут, справедливо считать, что и у обычных бактерий есть собственный "секрет". Ключевым свойством, определяющим возможность выживания при высоких температурах, является способность производить термостабильные клеточные компоненты, особенно белки, нуклеиновые кислоты и клеточные мембраны. У белков обычных организмов при температурах около 6 °C происходят быстрые и необратимые изменения структуры, или денатурация. В качестве примера можно привести свертывание при варке альбумина куриного яйца (яичного "белка"). Белки бактерий, обитающих в горячих источниках, не испытывают таких изменений до температуры 9 °C. Нуклеиновые кислоты также подвержены тепловой денатурации. Молекула ДНК при этом разделяется на две составляющие ее нити. Обычно это происходит в интервале температур 85- 100 °C в зависимости от соотношения нуклеотидов в молекуле ДНК.

При денатурации разрушается трехмерная структура белков (уникальная для каждого белка), которая необходима для выполнения таких его функций, как катализ. Эта структура поддерживается целым набором слабых химических связей, в результате действия которых линейная последовательность аминокислот, формирующая первичную структуру белковой молекулы, укладывается в особую, характерную для данного белка конформацию. Поддерживающие трехмерную структуру связи образуются между аминокислотами, расположенными в различных частях белковой молекулы. Мутации гена, в котором заложена информация о последовательности аминокислот, характерной для определенного белка, могут привести к изменению в составе аминокислот, что в свою очередь часто сказывается на его термостабильности. Это явление открывает возможности для эволюции термостабильных белков. Структура молекул, обеспечивающая термостабильность нуклеиновых кислот и клеточных мембран бактерий, обитающих в горячих источниках, по-видимому, также генетически обусловлена.

Поскольку повышение давления препятствует кипению воды при нормальной точке кипения, оно может предотвратить и некоторые повреждения биологических молекул, связанные с воздействиями высокой температуры. Например, давление в несколько сотен атмосфер подавляет тепловую денатурацию белков. Это объясняется тем, что денатурация вызывает раскручивание спиральной структуры белковой молекулы, сопровождающееся увеличением объема. Препятствуя увеличению объема, давление предотвращает денатурацию. При гораздо более высоких величинах давления, 5000 атм и более, оно само становится причиной денатурации. Механизм этого явления, которое предполагает компрессионное разрушение белковой молекулы, пока не ясен. Воздействие очень высокого давления приводит также к повышению термостабильности малых молекул, поскольку высокое давление препятствует увеличению объема, обусловленному в этом случае разрывами химических связей. Например, при атмосферном давлении мочевина быстро разрушается при температуре 13 °C, но стабильна, по крайней мере в течение часа, при 20 °C и давлении 29 тыс. атм.

Молекулы, находящиеся в растворе, ведут себя совершенно иначе. Взаимодействуя с растворителем, они часто распадаются при высокой температуре. Общее название таких реакций — сольватация; если растворителем служит вода, то реакция называется гидролизом. (Реакции 1 и 2, приведенные на с. 63, являются типичными примерами гидролиза, если их проследить справа налево.) Реакция 1, представленная здесь в виде гидролиза (3), отражает тот факт, что в растворе аминокислоты находятся в виде электрически заряженных ионов.

 

 

Гидролиз — это основной процесс, вследствие которого в природе разрушаются белки, нуклеиновые кислоты и многие другие сложные биологические молекулы. Гидролиз происходит, например, в процессе пищеварения у животных, но он осуществляется и вне живых систем, самопроизвольно, особенно при высоких температурах. Электрические поля, возникающие при сольволитических реакциях, приводят к уменьшению объема раствора путем электрострикции, т. е. связывания соседних молекул растворителя. Поэтому следует ожидать, что высокое давление должно ускорять процесс сольволиза, и опыты подтверждают это.

Поскольку мы полагаем, что жизненно важные процессы могут протекать только в растворах, отсюда следует, что высокое давление не может поднять верхний температурный предел жизни, по крайней мере в таких полярных раствори- телях, как вода и аммиак. Температура около 10 °C — вероятно, закономерный предел. Как мы увидим, это исключает из рассмотрения в качестве возможных мест обитания многие планеты Солнечной системы.

 

 

Атмосфера

Следующее условие, необходимое для обитаемости планеты, — наличие атмосферы. Достаточно простые соединения легких элементов, которые, по нашим предположениям, составляют основы живой материи, как правило, летучи, т. е. в широком интервале температур находятся в газообразном состоянии. По-видимому, такие соединения обязательно вы- рабатываются в процессах обмена веществ у живых организмов, а также при тепловых и фотохимических воздействиях на мертвые организмы, которые сопровождаются выделением газов в атмосферу. Эти газы, наиболее простыми примерами которых на Земле являются диоксид углерода (углекислый газ), пары воды и кислород, в конце концов включаются в кругооборот веществ, который происходит в живой природе. Если бы земное тяготение не могло их удерживать, то они улетучились бы в космическое пространство, наша планета со временем исчерпала свои "запасы" легких элементов и жизнь на ней прекратилась бы. Таким образом, если бы на каком-то космическом теле, гравитационное поле которого недостаточно сильно, чтобы удерживать атмосферу, возникла жизнь, она не могла бы долго существовать.

Высказывалось предположение, что жизнь может существовать под поверхностью таких небесных тел, как Луна, которые имеют либо очень разреженную атмосферу, либо вообще лишены ее. Подобное предположение строится на том, что газы могут быть захвачены подповерхностным слоем, который и становится естественной средой обитания живых организмов. Но поскольку любая среда обитания, возникшая под поверхностью планеты, лишена основного биологически важного источника энергии — Солнца, такое предположение лишь подменяет одну проблему другой. Жизнь нуждается в постоянном притоке как вещества, так и энергии, но если вещество участвует в кругообороте (этим обусловлена необходимость атмосферы), то энергия, согласно фундаментальным законам термодинамики, ведет себя иначе. Биосфера способна функционировать, покуда снабжается энергией, хотя различные ее источники не равноценны. Например, Солнечная система очень богата тепловой энергией — тепло вырабатывается в недрах многих планет, включая Землю. Однако мы не знаем организмов, которые были бы способны использовать его как источник энергии для своих жизненных процессов. Чтобы использовать теплоту в качестве источника энергии, организм, вероятно, должен функционировать подобно тепловой машине, т. е. переносить теплоту из области высокой температуры (например, от цилиндра бензинового двигателя) в область низкой температуры (к радиатору). При таком процессе часть перенесенной теплоты переходит в работу. Но чтобы к.п.д. таких тепловых машин был достаточно высоким, требуется высокая температура "нагревателя", а это немедленно создает огромные трудности для живых систем, так как порождает множество дополнительных проблем.

Ни одной из этих проблем не создает солнечный свет. Солнце постоянный, фактически неисчерпаемый источник энергии, которая легко используется в химических процессах при любой температуре. Жизнь на нашей планете целиком зависит от солнечной энергии, поэтому естественно предположить, что нигде в другом месте Солнечной системы жизнь не могла бы развиваться без прямого или косвенного потребления энергии этого вида.

Не меняет существа дела и тот факт, что некоторые бактерии способны жить в темноте, используя для питания только неорганические вещества, а как единственный источник углерода — его диоксид. Такие организмы, называемые хемолитоавтотрофами (что в буквальном переводе значит: питающие себя неорганическими химическими веществами), получают энергию, необходимую для превращения диоксида углерода в органические вещества за счет окисления водорода, серы или других неорганических веществ. Но эти источники энергии в отличие от Солнца истощаются и после использования не могут восстанавливаться без участия солнечной энергии. Так, водород, важный источник энергии для некоторых хемолитоавтотрофов, образуется в анаэробных условиях (например, в болотах, на дне озер или в желудочно- кишечном тракте животных) путем разложения под действием бактерий растительного материала, который сам, конечно, образуется в процессе фотосинтеза. Хемолитоавтотрофы используют этот водород для получения из диоксида углерода метана и веществ, необходимых для жизнедеятельности клетки. Метан поступает в атмосферу, где разлагается под действием солнечного света с образованием водорода и других продуктов. В атмосфере Земли водород содержится в концентрации 0,5 на миллион частей; почти весь он образовался из метана, выделяемого бактериями. Водород и метан выбрасываются в атмосферу также при извержениях вулканов, но в несравненно меньшем количестве. Другой существенный источник атмосферного водорода — верхние слои атмосферы, где под действием солнечного УФ-излучения пары воды разлагаются с высвобождением атомов водорода, которые улетучиваются в космическое пространство.

Многочисленным популяциям различных животных — рыб, морских моллюсков, мидий, гигантских червей и т. д., которые, как было установлено, и обитают вблизи горячих источников, обнаруженных на глубине 2500 м в Тихом океане, иногда приписывают способность существовать независимо от солнечной энергии. Известно несколько таких зон: одна рядом с Галапагосским архипелагом, другая — на расстоянии примерно 21 к северо-западу, у берегов Мексики. В глубине океана запасы пищи заведомо скудны, и открытие в 1977 г. первой такой популяции немедленно поставило вопрос об источнике их питания. Одна возможность, по-видимому, заключается в использовании органического вещества, скапливающегося на дне океана, отбросов, образовавшихся в результате биологической активности в поверхностном слое; они переносятся в районы геотермальной активности горизонтальными течениями, возникающими вследствие вертикальных выбросов горячей воды. Движение вверх перегретой воды и вызывает образование придонных горизонтальных холодных течений, направленных к месту выброса. Предполагается, что таким путем здесь и скапливаются органические останки.

Другой источник питательных веществ стал известен после того, как выяснилось, что в воде термальных источников содержится сероводород (H2S). Не исключено, что хемолитоавтотрофные бактерии находятся у начала цепи питания. Как показали дальнейшие исследования, хемолитоавтотрофы действительно являются главным источником органического вещества в экосистеме термальных источников. Бактерии, о которых идет речь, осуществляют следующую реакцию:

 

 

где СН2О означает углевод или вообще любое вещество клетки.

Поскольку "топливом" для этих глубоководных сообществ служит образовавшийся в глубинах Земли сероводород, их обычно рассматривают как живые системы, способные обходиться без солнечной энергии. Однако это не совсем верно, так как кислород, используемый ими для окисления "топлива", является продуктом фотохимических превращений. На Земле имеются только два значительных источника свободного кислорода, и оба они связаны с активностью Солнца. Главный из них — это фотосинтез, протекающий в зеленых растениях (а также в некоторых бактериях):

 

 

где С6Н12O6 — углевод глюкоза. Другим, менее существенным источником свободного кислорода является фотолиз паров воды в верхних слоях атмосферы. Если бы в геотермальном источнике удалось обнаружить микроорганизм, использующий для жизни только газы, образующиеся в глубинах Земли, то это означало бы, что открыт тип метаболизма, абсолютно не зависящий от солнечной энергии.

Следует помнить, что океан играет важную роль в жизни описанной глубоководной экосистемы, поскольку он создает окружающую среду для организмов из термальных источников, без которой они не могли бы существовать. Океан обеспечивает их не только кислородом, но и всеми нужными питательными веществами, за исключением сероводорода. Он удаляет отходы. И он же позволяет этим организмам переселяться в новые районы, что необходимо для их выживания, поскольку источники недолговечны — согласно оценкам, время их жизни не превышает 10 лет. Расстояние между отдельными термальными источниками в одном районе океана составляет 5-10 км.

 

 

Растворитель

В настоящее время принято считать, что необходимым условием жизни является также наличие растворителя того или иного типа. Многие химические реакции, протекающие в живых системах, без растворителя были бы невозможны. На Земле таким биологическим растворителем служит вода. Она представляет собой главную составляющую живых клеток и одно из самых распространенных на земной поверхности соединений. Ввиду того что образующие воду химические элементы широко распространены в космическом пространстве, вода, несомненно, — одно из наиболее часто встречающихся соединений во Вселенной. Но, несмотря на такое изобилие воды повсюду, Земля — единственная планета в Солнечной системе, имеющая на своей поверхности океан: это важный факт, к которому мы вернемся позже.

Вода обладает рядом особых и неожиданных свойств, благодаря которым она может служить биологическим растворителем — естественной средой обитания живых организмов. Этими свойствами определяется ее главная роль в стабилизации температуры Земли. К числу таких свойств относятся: высокие температуры плавления (таяния) и кипения: высокая теплоемкость; широкий диапазон температур, в пределах которого вода остается в жидком состоянии; большая диэлектрическая постоянная (что очень важно для растворителя); способность расширяться вблизи точки замерзания. Всестороннее развитие эти вопросы получили, в частности, в трудах Л.Дж. Гендерсона (1878–1942), профессора химии Гарвардского университета.

Современные исследования показали, что столь необычные свойства воды обусловлены способностью ее молекул образовывать водородные связи между собой и с другими молекулами, содержащими атомы кислорода или азота. В действительности жидкая вода состоит из агрегатов, в которых отдельные молекулы соединены вместе водородными связями. По этой причине при обсуждении вопроса о том, какие неводные растворители могли бы использоваться живыми системами в других мирах, особое внимание уделяется аммиаку (NH3), который также образует водородные связи и по многим свойствам сходен с водой. Называются и другие вещества, способные к образованию водородных связей, в частности фтористоводородная кислота (HF) и цианистый водород (HCN). Однако последние два соединения — маловероятные кандидаты на эту роль. Фтор относится к редким элементам: на один атом фтора в наблюдаемой Вселенной приходится 10000 атомов кислорода, так что трудно представить на любой планете условия, которые благоприятствовали бы образованию океана, состоящего из HF, а не из Н2О. Что касается цианистого водорода (HCN), составляющие его элементы в космическом пространстве встречаются в изобилии, но это соединение термодинамически недостаточно устойчиво. Поэтому маловероятно, чтобы оно могло в больших количествах когда-либо накапливаться на какой-то планете, хотя, как мы говорили раньше, HCN представляет собой важное (хотя и временное) промежуточное звено в предбиологическом синтезе органических веществ.



Поделиться:


Последнее изменение этой страницы: 2021-01-14; просмотров: 68; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.218.55.14 (0.056 с.)