Цвет пигментов водорослей и фотосинтез. Почему лучи синей части спектра достигают больших глубин, нежели красной? 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Цвет пигментов водорослей и фотосинтез. Почему лучи синей части спектра достигают больших глубин, нежели красной?

Поиск

 

Из альгологии, раздела ботаники, посвященному всему, что касается водорослей, мы можем узнать, что водоросли разных отделов способны обитать на разных глубинах водоемов. Так, зеленые водоросли встречаются обычно на глубине в несколько метров. Бурые водоросли могут жить на глубинах до 200 метров. Красные водоросли – до 268 метров.

Там же, в книгах и учебниках по альгологии, вы найдете объяснение этим фактам, устанавливающее взаимосвязь между цветом пигментов в составе клеток водорослей и предельной глубиной обитания. Объяснение примерно следующее.

Спектральные компоненты солнечного света пронизывают воду на разную глубину. Красные лучи проникают лишь в верхние слои, а синие – значительно глубже. Для функционирования хлорофилла необходим красный свет. Именно поэтому зеленые водоросли не могут жить на больших глубинах. В составе клеток бурых водорослей присутствует пигмент, позволяющий осуществлять фотосинтез при желто‑зеленом свете. И потому порог обитания этого отдела достигает 200 м. Что касается красных водорослей, то пигмент в их составе использует зеленый и синий цвета, что и позволяет им жить глубже всех.

Но соответствует ли данное объяснение действительности? Давайте попробуем разобраться.

В клетках водорослей отдела Зеленых преобладает пигмент хлорофилл. Именно поэтому данный тип водорослей окрашен в различные оттенки зеленого.

В красных водорослях очень много пигмента фикоэритрина, характеризующегося красным цветом. Этот пигмент и придает данному отделу этих растений соответствующий цвет.

В бурых водорослях присутствует пигмент фукоксантин – бурого цвета.

То же самое можно сказать о водорослях других цветов – желто‑зеленых, сине‑зеленых. В каждом случае цвет определяется каким‑то пигментом или их сочетанием.

Теперь о том, что такое пигменты и для чего они нужны клетке.

Пигменты требуются для фотосинтеза. Фотосинтез – это процесс разложения воды и углекислого газа с последующим построением из водорода, углерода и кислорода всевозможных видов органических соединений. Пигменты накапливают солнечную энергию (фотоны солнечного происхождения). Эти фотоны как раз используются для разложения воды и углекислого газа. Сообщение этой энергии – это своего рода точечный нагрев мест соединения элементов в молекулах.

Пигменты накапливают все виды солнечных фотонов, которые достигают Земли и проходят сквозь атмосферу. Ошибкой было бы считать, что пигменты «работают» только с фотонами видимого спектра. Они накапливают также инфракрасные и радио фотоны. Когда световые лучи не заслоняются на своем пути различными плотными и жидкими телами, большее число фотонов в составе этих лучей достигает обогреваемое тело, в данном случае водоросль. Фотоны (энергия) нужны для точечного разогрева. Чем больше глубина водоема, тем меньше энергии достигает, тем больше фотонов поглощается на пути.

Пигменты разного цвета способны задерживать – аккумулировать на себе – разное количество фотонов, приходящих со световыми лучами. И не только приходящих с лучами, но и движущихся диффузно – от атома к атому, от молекулы к молекуле – вниз, под действием притяжения планеты. Фотоны видимого диапазона выступают только в качестве своего рода «маркеров». Эти видимые фотоны указывают нам цвет пигмента. И одновременно сообщают этим особенности Силового Поля этого пигмента. Цвет пигмента нам об этом и «говорит». Т. е. Поле Притяжения преобладает или Поле Отталкивания, и какова величина того или другого. Вот и выходит, в соответствии с этой теорией, что пигменты красного цвета должны иметь наибольшее по величине Поле Притяжения – иначе говоря, наибольшую относительную массу. А все потому, что фотоны красного цвета, как обладающие Полями Отталкивания, сложнее всего удержать в составе элемента – притяжением. Красный цвет вещества как раз нам и указывает на то, что фотоны такого цвета в достаточном количестве накапливаются на поверхности его элементов – не говоря о фотонах всех остальных цветов. Такой способностью – удерживать больше энергии на поверхности – как раз и обладает названный ранее пигмент фикоэритрин.

Что касается пигментов других цветов, то качественно‑количественный состав аккумулируемого ими на поверхности солнечного излучения будет несколько иным, нежели у пигментов красного цвета. К примеру, хлорофилл, обладающий зеленой окраской, будет накапливать в своем составе меньше солнечной энергии, чем фикоэритрин. На этот факт нам как раз и указывает его зеленый цвет. Зеленый – комплексный. Он складывается из самых «тяжелых» желтых видимых фотонов и самых «легких» синих. В ходе своего инерционного движения те и другие оказываются в равны условиях. Величина их Силы Инерции равная. И потому они совершенно одинаково подчиняются в ходе своего движения одним и тем же объектам с Полями Притяжения, воздействующим на них своим притяжением. Это означает, что в фотонах синего и желтого цвета, формирующим вкупе зеленый, возникает по отношению к одному и тому же химическому элементу одна и та же по величине Сила Притяжения.

Здесь следует отвлечься и пояснить один важный момент.

Цвет веществ в том виде, в каком он нам знаком по окружающему миру – т. е. как испускание видимых фотонов в ответ на падение (не только видимых фотонов, и не только фотонов, но и других типов элементарных частиц) – явление достаточно уникальное. Оно возможно лишь благодаря тому, что в составе небесного тела, обогреваемого более крупным небесным телом (породившим его), происходит постоянное течение всех этих свободных частиц от периферии к центру. К примеру, наше Солнце испускает частицы. Они достигают атмосферы Земли и движутся вниз – прямыми лучами или диффузно (от элемента к элементу). Диффузно распространяющиеся частицы ученые именуют «электричеством». Все это было сказано для того, чтобы пояснить, почему фотоны разных цветов – синие и желтые обладают одинаковой Силой Инерции. Но Силой Инерции могут обладать лишь движущиеся фотоны. А это означает, что в каждый момент времени по поверхности любого химического элемента в составе освещаемого небесного тела движутся свободные частицы. Они проходят транзитом – от периферии небесного тела к его центру. Т. е. состав поверхностных слоев любого химического элемента постоянно обновляется.

Сказанное совершенно справедливо для фотонов двух других комплексных цветов – фиолетового и оранжевого.

И это еще не все объяснение.

Любой химический элемент устроен точно по образу любого небесного тела. В этом и заключается истинный смысл «планетарной модели атома», а вовсе не в том, что электроны летают по орбитам как планеты вокруг Солнца. Никакие электроны в элементах не летают! Любой химический элемент – это совокупность слоев элементарных частиц – простейших (неделимых) и комплексных. Также как любое небесное тело – это последовательность слоев химических элементов. Т. е. комплексные (нестабильные) элементарные частицы в химических элементах выполняют ту же функцию, что и химические элементы в составе небесных тел. И точно также как в составе небесного тела более тяжелые элементы располагаются ближе к центру, а более легкие – ближе к периферии, Так же и в любом химическом элементе. Ближе к периферии располагаются более тяжелые элементарные частицы. А ближе центру – более тяжелые. Это же правило распространяется на частицы, транзитно проходящие по поверхности элементов. Более тяжелые, чья Сила Инерции меньше, ныряют глубже к центру. А те, что легче и чья Сила Инерции больше, образуют более поверхностные текучие слои. Это означает, что если химический элемент красного цвета, то его верхний слой из фотонов видимого диапазона образован красными фотонами. А под этим слоем располагаются фотоны всех остальных пяти цветов – по нисходящей – оранжевый, желтый, зеленый, синий и фиолетовый.

Если же цвет химического элемента зеленый, то это означает, что верхний слой его видимых фотонов представлен фотонами, дающими зеленый цвет. А вот слоев желтого, оранжевого и красного цветов у него нет или практически нет.

Повторим – более тяжелые химические элементы обладают способностью удерживать более легкие элементарные частицы – красного цвета, например.

Таким образом, не совсем корректно говорить, что для фотосинтеза одних водорослей нужна одна цветовая гамма, а для фотосинтеза других – другая. Точнее сказать, взаимосвязь между цветом пигментов и предельной глубиной обитания прослежена верно. Однако объяснение верно не до конца. Энергия, требующаяся водорослям для фотосинтеза, состоит не только из видимых фотонов. Не следует забывать про ИК и радио фотоны, а также УФ. Все эти виды частиц (фотонов) требуются и используются растениями при фотосинтезе. А вовсе не так – хлорофиллу нужные преимущественно красные видимые фотоны, фукоксантину – желтые и образующие зеленый цвет, а фикоэритрину – синие и зеленые. Вовсе нет.

Ученые совершенно верно установили факт, что световые лучи синего и зеленого цветов способны достигать в большем количественном составе больших глубин, нежели желтые лучи, и тем более – красные. Причина все та же – разная по величине Сила Инерции фотонов.

Среди частиц Физического Плана, как известно, в состоянии покоя только у красных есть Поле Отталкивания. У желтых и синих вне состояния движения – Поле Притяжения. Поэтому инерционное движение только у красных может длиться бесконечно. Желтые и синие с течением времени останавливаются. И чем меньше Сила Инерции, тем быстрее произойдет остановка. Т. е. световой поток желтого цвета тормозится медленнее зеленого, а зеленый – не так быстро, как синего. Однако, как известно, в естественных условиях монохроматического света не бывает. В световом луче смешаны частицы разного качества – разных подуровней Физического Плана и различных цветов. И в таком смешанном световом луче частицы Ян поддерживают инерционное движение частиц Инь. А частицы Инь, соответственно, тормозят Ян. Большой процент частиц какого‑то одного качества несомненно сказывается на общей скорости светового потока и на средней величине Силы Инерции.

Фотоны проникают в толщу воды, двигаясь либо диффузно, либо прямолинейно. Диффузное движение – это движение под действием Сил Притяжения химически элементов, в среде которых происходит движение. Т. е. фотоны передаются от элемента к элементу, но при этом общее направление их перемещения остается все тем же – в сторону центра небесного тела. При этом сохраняется инерционный компонент их движения. Однако траектория их движения постоянно контролируется окружающими элементами. Вся совокупность движущихся фотонов (солнечных) образует своего рода газовые атмосферы химических элементов – как у небесных тел – планет. Для того чтобы понять, что представляют из себя химические элементы, вы должны чаще обращаться к книгам по астрономии. Поскольку аналогия между небесными телами и элементами полнейшая. Фотоны скользят в этих «газовых оболочках», постоянно сталкиваясь друг с другом, притягиваясь и отталкиваясь – т. е. ведут себя в точности как газы атмосферы Земли.

Таким образом, фотоны движутся вследствие действия в них двух Сил – Инерции и Притяжения (к центру небесного тела и к элементам, в среде которых они движутся). В каждый момент времени движения любого фотона, чтобы узнать направление и величину суммарной силы, следует пользоваться Правилом Параллелограмма.

Фотоны красного цвета слабо поглощаются средой, в которой движутся. Причина – их Поля Отталкивания в состоянии покоя. Из‑за этого у них велика Сила Инерции. Стакиваясь с химическими элементами, они с большей вероятностью отскакивают, нежели притягиваются. Именно поэтому меньшее число красных фотонов проникает в водную толщу по сравнению с фотонами других цветов. Они отражаются.

Фотоны синего цвета, напротив, способны проникать глубже фотонов других цветов. Их Сила Инерции наименьшая. При столкновении с химическими элементами они тормозятся – их Сила Инерции уменьшается. Они тормозятся и притягиваются элементами – поглощаются. Именно это – поглощение вместо отражения – позволяет большему числу синих фотонов проникать вглубь водной толщи.

Сделаем вывод.



Поделиться:


Последнее изменение этой страницы: 2021-01-14; просмотров: 177; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.129.253.21 (0.011 с.)