Описание шлифовального станка модели зу131м и его функциональное назначение 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Описание шлифовального станка модели зу131м и его функциональное назначение



Содержание

 

Введение

1. Описание шлифовального станка модели ЗУ131М и его функциональное назначение

2. Описание гидравлической схемы шлифовального станка модели ЗУ131М 6

3. Выбор и обоснование номинального давления в гидросистеме привода, выбор рабочей жидкости

4. Определение основных параметров гидродвигателей и их выбор

5. Выбор гидроаппаратов управления и регулирования

6. Выбор трубопроводов

7.Определение основных параметров и выбор силового насоса

8.Определение к.п.д. гидропривода

9. Приближенный расчет теплового режима гидропривода.

Приложение

Список литературы


Введение

 

Применение гидропривода в станкостроении позволяет существенно упростить кинематику станков, снизить их металлоемкость, повысить точность и надежность работы, а также уровень автоматизации производственного процесса.

Широкое использование гидроприводов в станкостроении определяется рядом их существенных преимуществ и, прежде всего возможностью получения больших усилий и мощностей при небольших размерах гидродвигателей. Применение гидроприводов обусловлено также следующими основными факторами:

-простота осуществления линейных перемещений механизмов с помощью гидроцилиндров, простота преобразования вращательного движения в возвратно-поступательное;

-малые габариты и малая инертность, динамические характеристики;

-малая удельная масса, т.е. масса гидропривода, отнесенная к передаваемой мощности;

-возможность бесступенчатого регулирования скорости движения исполнительного механизма;

-высокая надежность гидрооборудывания при длительной работе;

-достаточно высокое значение КПД, повышенная жесткость и долговечность.

Перечисленные преимущества гидропривода обуславливают его дальнейшее совершенствование и развитие по пути повышения эффективности и надежности станков и автоматических линий.

Основными элементами объемного гидропривода являются объемные гидромашины, гидроаппаратура, гидролинии и вспомогательные устройства. Объемный гидродвигатель (силовой гидроцилиндр, гидромотор) является потребителем энергии, он преобразует энергию жидкости в механическую энергию выходного звена гидропривода. Объемный насос служит источником энергии рабочей жидкости. Гидроаппаратура состоит из устройств, осуществляющих управление гидропривода, выполняя распределительные и регулирующие функции. Гидролинии - это трубопроводы и каналы, связывающие отдельные элементы гидропривода. Вспомогательные устройства объединяют различные кондиционеры рабочей жидкости, обеспечивающие ее качественное состояние. К этим устройствам относятся гидропреобразователи, аккумуляторы, фильтры, теплообменники, емкости.

Курсовая работа по курсу гидропривод и гидропневмоавтоматика заключается в проектировании и расчете комплексного гидропривода 1-48-3У131, предназначенного для питания гидросистемы и дистанционного управления движением гидрофицированных органов плоскошлифовального станка с прямоугольным столом 3У131.


Описание шлифовального станка модели ЗУ131М и его функциональное назначение

 

Предназначен для наружного и внутреннего шлифования цилиндрических, конических и фасонных поверхностей, а также плоских фланцевых поверхностей в условиях единичного и мелкосерийного производства. Изготовитель: Лубенский станкостроительный завод "ШлифВерст", ОАО, 1986 г.в.

 

Выбор трубопроводов

 

Для изготовления жестких трубопроводов в гидроприводах станков в основном применяют трубы по ГОСТ 8734-75 из стали 20 или медные трубы по ГОСТ 11383-75. Стальные трубы применяют при всех давлениях и расходах. Их изготавливают бесшовными холоднотянутыми и холоднокатаными (при d<30 мм). При ограничении массы применяют тонкостенные бесшовные трубы из стали 10 и 20.

Медные трубы применяют при p<16 МПа и d≤16 мм. По сравнению со стальными медные трубы тяжелее, дороже и менее прочные. Достоинство медных труб - их гибкость, что обеспечивает монтаж сложных по конфигурации гидросхем.

С целью уменьшения потерь давления в трубопроводах диаметры их подбирают, так, чтобы по возможности обеспечить ламинарный режим движения жидкости (Re<2300).

 Определим внутренний диаметр трубопровода:

 

 , (6.1)

 

где Q-расход жидкости;

vТ- скорость в трубопроводе:

во всасывающем трубопроводе vТ≤1.6 м/с;

сливных vТ=2 м/с;

напорном vТ=2 м/с.

Для всасывающей гидролинии от бака до насоса:

 

 

Для сливной гидролинии:

 

 

Для напорной гидролинии

 

 Полученное значение диаметра трубопровода округляем до стандартного по ГОСТ 16516-80: , , .

Толщину стенки трубопровода определим по формуле для толстостенных труб (при dн/δ>16) с учетом отклонения в размерах диаметра ∆d и толщины стенки Кσ:

 

 , (6.2)

 

где рmax-максимально возможное давление в трубопроводе;

dн- наружный диаметр трубопровода;

р]- допустимое напряжение разрыва материала трубы (30…50% временного сопротивления материала), [σр]=0.5·200=100 Мпа,

σв= 200…250 Мпа- временное сопротивление для цветных материалов.

Учитывая возможность внешних механических повреждений, толщину стенки не следует назначать менее 1.0 мм для цветных металлов и 0.5 мм для сталей.

Всасывающая гидролиния:

 

 

Учитывая возможность внешних механических повреждений: δ=0,5 мм.

Сливная гидролиния:

 

;

Выбираем δ=0,5 мм.

Напорная гидролиния:

 

;

 

Выбираем δ=0,5 мм.

Исходя из толщины стенок, принимаем материал трубопровода, саль 40.

Различают три вида потерь давления в гидроприводе: потери давления на трение жидкости в трубопроводе, потери давления на местных сопротивлениях и потери давления в гидроаппаратуре.

Потери давления на трение жидкости в трубопроводе определяются по формуле Дарси-Вейсбаха:

 

, (6.3)

 

где λ- коэффициент гидравлического трения,

l- длина рассматриваемого участка трубопровода,

d-внутренний диаметр трубопровода,

ρ- плотность жидкости,

vт- средняя скорость движения жидкости в трубопроводе:

 

 vт=4Q/πd2, (6.4)

 

На величину коэффициента λ оказывает влияние режим течения жидкости. Различают два режима: ламинарный и турбулентный. Режим течения определяется безразмерным числом Рейнольдса Re. Для трубопроводов круглого сечения:

 

 Re=vтd/υ, (6.5)

 

где υ- кинематическая вязкость жидкости при рабочей температуре.

Ламинарный режим течения переходит в турбулентный при определенном, критическом значении Reкр=2100…2300 для круглых гладких труб и Re=1600 для резиновых рукавов. Если режим течения ламинарный, то коэффициент гидравлического трения определяется по формуле:

 

 λ=64/Re, (6.6)

 

если режим турбулентный, то

 

 λ=0.3164/Re0.25, (6.7)

 

Определим потери на трение по длине

Всасывающая гидролиния

 

Re=1.5·103·6/30=300;

 

 где υ=30 мм2/с- вязкость жидкости.

Т.к. Re=300<2300, то коэффициент гидравлического трения определяется по формуле:

 

λ=64/300=0,213;

Сливная гидролиния

 

Re=2·103·5/30=333;

λ=64/333=0,192;

 

Напорная гидролиния

Re=2·103·5/30=333;

λ=64/333=0,192;

 

Определяем потери давления на трение по длине по формуле:

 

, (6.8)

 

где ρ=850 кг\м3;

Всасывающая гидролиния: l=0.2 м; v=1.5 м/c; d=6 мм; λ=0,213

 

МПа,

 

Сливная гидролиния: l=1.5 м; v=2 м/c; d=5 мм; λ=0,192

 

МПа.

 

Напорная гидролиния: l=1.3 м; v=2 м/c; d=5 мм; λ=0,192

 

МПа,

Суммарное значение потерь давления на трение по длине:

 

ΣΔPТ=0,0067+0,0979+0,0849=0,1895МПа.

 

Потери давления на местных сопротивлениях определяются по формуле Вейсбаха:

 ; (6.9)

где ξ-коэффициент местного сопротивления.

Средние значения местных сопротивлений приведены в справочной литературе [2], стр. 448.

На схеме есть переходники ξ=0.10, плавные повороты труб под углом 90º,

 ξ=0.12, обратные клапаны ξ=2.

Для всасывающей гидролинии получим:

 

ΔPм=0.12·2·0.10·1,52/2·850=23Па,

 

Для сливной гидролинии

 

ΔPм=0.12·2·0.10·22/2·850=40.8Па,

 

Для напорной гидролинии

 

ΔPм=0.12·2·0.10·22/2·850=40.8Па,

 

Потери на обратных клапанах

 

ΔPк.л.=2·2=4 Па,

 

Потери на штуцерах присоединяющие трубы к агрегатам

 

ΔPм=0.1·7=0.7 Па,

ΣΔPм=23+40.8+40.8+4+0.7=109.3Па.

 

Потери давления в гидроаппаратуре определяется по расчетному расходу Q и параметрам, приведенным в их технических характеристиках

 


 

, (6.10)

 

где ΔPmax - потери давления на аппарате при максимальном расходе Qmax;

n- показатель степени, при ламинарном режиме течения n=1.0, при турбулентном режиме n=2.

Рассчитываем потери давления для фильтра пластинчатого 7(1):

 

МПа.

 

Рассчитываем потери давления для фильтра пластинчатого 7(2):

 

МПа.

 

Рассчитываем потери давления для дросселя 35 и 36:

 

МПа.

 

Суммируем потери давления в гидроаппаратуре

 

 ΣΔPа=0,036+0,144+0,049+0,049=0,278 МПа.

 

Определим суммарные потери давления в гидролинии:

 

Содержание

 

Введение

1. Описание шлифовального станка модели ЗУ131М и его функциональное назначение

2. Описание гидравлической схемы шлифовального станка модели ЗУ131М 6

3. Выбор и обоснование номинального давления в гидросистеме привода, выбор рабочей жидкости

4. Определение основных параметров гидродвигателей и их выбор

5. Выбор гидроаппаратов управления и регулирования

6. Выбор трубопроводов

7.Определение основных параметров и выбор силового насоса

8.Определение к.п.д. гидропривода

9. Приближенный расчет теплового режима гидропривода.

Приложение

Список литературы


Введение

 

Применение гидропривода в станкостроении позволяет существенно упростить кинематику станков, снизить их металлоемкость, повысить точность и надежность работы, а также уровень автоматизации производственного процесса.

Широкое использование гидроприводов в станкостроении определяется рядом их существенных преимуществ и, прежде всего возможностью получения больших усилий и мощностей при небольших размерах гидродвигателей. Применение гидроприводов обусловлено также следующими основными факторами:

-простота осуществления линейных перемещений механизмов с помощью гидроцилиндров, простота преобразования вращательного движения в возвратно-поступательное;

-малые габариты и малая инертность, динамические характеристики;

-малая удельная масса, т.е. масса гидропривода, отнесенная к передаваемой мощности;

-возможность бесступенчатого регулирования скорости движения исполнительного механизма;

-высокая надежность гидрооборудывания при длительной работе;

-достаточно высокое значение КПД, повышенная жесткость и долговечность.

Перечисленные преимущества гидропривода обуславливают его дальнейшее совершенствование и развитие по пути повышения эффективности и надежности станков и автоматических линий.

Основными элементами объемного гидропривода являются объемные гидромашины, гидроаппаратура, гидролинии и вспомогательные устройства. Объемный гидродвигатель (силовой гидроцилиндр, гидромотор) является потребителем энергии, он преобразует энергию жидкости в механическую энергию выходного звена гидропривода. Объемный насос служит источником энергии рабочей жидкости. Гидроаппаратура состоит из устройств, осуществляющих управление гидропривода, выполняя распределительные и регулирующие функции. Гидролинии - это трубопроводы и каналы, связывающие отдельные элементы гидропривода. Вспомогательные устройства объединяют различные кондиционеры рабочей жидкости, обеспечивающие ее качественное состояние. К этим устройствам относятся гидропреобразователи, аккумуляторы, фильтры, теплообменники, емкости.

Курсовая работа по курсу гидропривод и гидропневмоавтоматика заключается в проектировании и расчете комплексного гидропривода 1-48-3У131, предназначенного для питания гидросистемы и дистанционного управления движением гидрофицированных органов плоскошлифовального станка с прямоугольным столом 3У131.


Описание шлифовального станка модели ЗУ131М и его функциональное назначение

 

Предназначен для наружного и внутреннего шлифования цилиндрических, конических и фасонных поверхностей, а также плоских фланцевых поверхностей в условиях единичного и мелкосерийного производства. Изготовитель: Лубенский станкостроительный завод "ШлифВерст", ОАО, 1986 г.в.

 



Поделиться:


Последнее изменение этой страницы: 2021-01-08; просмотров: 80; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.225.31.77 (0.058 с.)