Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Апреля, группа№13, физика, урок№50.↑ Стр 1 из 4Следующая ⇒ Содержание книги
Поиск на нашем сайте
Апреля, группа№13, физика, урок№50. Тема программы: Электрический ток в различных средах. Тема урока: Электрический ток в газах. Цель: Рассмотреть условия возникновения тока в газах, виды самостоятельного разряда в газах. План. Газовый разряд. 2. Условие возникновения несамостоятельного газового разряда. 3. Условие возникновения самостоятельного газового разряда. 4. Виды самостоятельного разряда. Опорный конспект. Процесс протекания электрического тока через газ называется газовым разрядом. При комнатных температурах газы практически не проводят электрический ток, так как состоят из нейтральных атомов, т. е. являются диэлектриками. При нагреве или облучении ультрафиолетовым светом, рентгеновскими лучами либо другим видом излучения атомы газа получают дополнительную энергию, которая может привести к ионизации. Так, например, при нагреве за счет увеличения скорости молекул часть из них при столкновениях друг с другом распадается на положительно заряженные ионы и электроны. Проводимость газов обеспечивается как электронами, так и положительно заряженными ионами. Рекомбинация — процесс воссоединения электрона с положительным ионом — наблюдается, если прекратить действие ионизатора. Если внешнее поле отсутствует, то при действии ионизатора устанавливается динамическое равновесие между количеством исчезающих и вновь образующихся пар заряженных частиц. Несамостоятельный разряд в газе, ионизованном каким-либо ионизатором, возникает в постоянном поле и существует до тех пор, пока существует ионизирующий агент. ВАХ несамостоятельного разряда представляет собой кривую, выходящую на насыщение. Самостоятельный газовый разряд. Электрический разряд в газе, сохраняющийся после прекращения действия внешнего ионизатора, называется самостоятельным газовым разрядом. Для его осуществления необходимо, чтобы в результате самого разряда в газе непрерывно образовывались свободные заряды. Основным источником их возникновения является ударная ионизация молекул газа. Если после достижения насыщения продолжать увеличивать разность потенциалов между электродами, то сила тока при достаточно большом напряжении станет резко возрастать (график 2). Это означает, что в газе появляются дополнительные ионы, которые образуются за счет действия ионизатора. Сила тока может возрасти в сотни и тысячи раз, а число заряженных частиц, возникающих в процессе разряда, может стать таким большим, что внешний ионизатор будет уже не нужен для поддержания разряда. Поэтому ионизатор теперь можно убрать.
Различные типы самостоятельного разряда и их техническое применение. В зависимости от свойств и состояния газа, характера и расположения электродов, а также от приложенного к электродам напряжения возникают различные виды самостоятельного разряда. Рассмотрим несколько из них. Тлеющий разряд. Тлеющий разряд наблюдается в газах при низких давлениях порядка нескольких десятков миллиметров ртутного столба и меньше. Если рассмотреть трубку с тлеющим разрядом, то можно увидеть, что основными частями тлеющего разряда являются катодное темное пространство, резко отдаленное от него отрицательное, или тлеющее свечение, которое постепенно переходит в область фарадеева темного пространства. Тлеющий разряд используется в газосветных трубках, лампах дневного света, стабилизаторах напряжения, для получения электронных и ионных пучков. Если в катоде сделать щель, то сквозь нее в пространство за катодом проходят узкие ионные пучки, часто называемые каналовыми лучами. Широко используется явление катодного распыления, т.е. разрушение поверхности катода под действием ударяющихся о него положительных ионов. Ультрамикроскопические осколки материала катода летят во все стороны по прямым линиям и покрывают тонким слоем поверхность тел (особенно диэлектриков), помещенных в трубку. Таким способом изготовляют зеркала для ряда приборов, наносят тонкий слой металла на селеновые фотоэлементы. Коронный разряд. Коронный разряд возникает при нормальном давлении в газе, находящемся в сильно неоднородном электрическом поле (например, около остриев или проводов линий высокого напряжения). При коронном разряде ионизация газа и его свечение происходят лишь вблизи коронирующих электродов. При повышенном напряжении коронный разряд на острие приобретает вид исходящих из острия и перемежающихся во времени светлых линий. Эти линии, имеющие ряд изломов и изгибов, образуют подобие кисти, вследствие чего такой разряд называют кистевым. Заряженное грозовое облако индуцирует на поверхности Земли под собой электрические заряды противоположного знака. Особенно большой заряд скапливается на остриях. Поэтому перед грозой или во время грозы нередко на остриях и острых углах высоко поднятых предметов вспыхивают похожие на кисточки конусы света. С давних времен это свечение называют огнями святого Эльма. Особенно часто свидетелями этого явления становятся альпинисты. Иногда лаже не только металлические предметы, но и кончики волос на голове украшаются маленькими светящимися кисточками. С коронным разрядом приходится считаться, имея дело с высоким напряжением. При наличии выступающих частей или очень тонких проводов может начаться коронный разряд. Это приводит к утечке электроэнергии. Чем выше напряжение высоковольтной линии, тем толще должны быть провода. Искровой разряд. Искровой разряд имеет вид ярких зигзагообразных разветвляющихся нитей-каналов, которые пронизывают разрядный промежуток и исчезают, сменяясь новыми. Характерным примером искрового разряда является молния. Главный канал молнии имеет диаметр от 10 до 25 см., а длина молнии может достигать нескольких километров. Максимальная сила тока импульса молнии достигает десятков и сотен тысяч ампер. При малой длине разрядного промежутка искровой разряд вызывает специфическое разрушение анода, называемое эрозией. Это явление было использовано в электроискровом методе резки, сверления и других видах точной обработки металла. Искровой промежуток применяется в качестве предохранителя от перенапряжения в электрических линиях передач (например, в телефонных линиях). Если вблизи линии проходит сильный кратковременный ток, то в проводах этой линии индуцируются напряжении и токи, которые могут разрушить электрическую установку и опасны для жизни людей. Во избежание этого используются специальные предохранители, состоящие из двух изогнутых электродов, один из которых присоединен к линии, а другой заземлен. Если потенциал линии относительно земли сильно возрастает, то между электродами возникает искровой разряд, который вместе с нагретым им воздухом поднимается вверх, удлиняется и обрывается.
Дуговой разряд. Дуговой разряд был открыт В. В. Петровым в 1802 году. Этот разряд представляет собой одну из форм газового разряда, осуществляющуюся при большой плотности тока и сравнительно небольшом напряжении между электродами (порядка нескольких десятков вольт). Основной причиной дугового разряда является интенсивное испускание термоэлектронов раскаленным катодом. Эти электроны ускоряются электрическим полем и производят ударную ионизацию молекул газа, благодаря чему электрическое сопротивление газового промежутка между электродами сравнительно мало. Если уменьшить сопротивление внешней цепи, увеличить силу тока дугового разряда, то проводимость газового промежутка столь сильно возрастет, что напряжение между электродами уменьшается. Поэтому говорят, что дуговой разряд имеет падающую вольт-амперную характеристику. При атмосферном давлении температура катода достигает 3000 °C. Электроны, бомбардируя анод, создают в нем углубление (кратер) и нагревают его. Температура кратера около 4000 °С, а при больших давлениях воздуха достигает 6000-7000 °С. Температура газа в канале дугового разряда достигает 5000-6000 °С, поэтому в нем происходит интенсивная термоионизация. В ряде случаев дуговой разряд наблюдается и при сравнительно низкой температуре катода (например, в ртутной дуговой лампе). В 1876 году П. Н. Яблочков впервые использовал электрическую дугу как источник света. В «свече Яблочкова» угли были расположены параллельно и разделены изогнутой прослойкой, а их концы соединены проводящим «запальным мостиком». Когда ток включался, запальный мостик сгорал и между углями образовывалась электрическая дуга. По мере сгорания углей изолирующая прослойка испарялась. Дуговой разряд применяется как источник света и в наши дни, например в прожекторах и проекционных аппаратах. Высокая температура дугового разряда позволяет использовать его для устройства дуговой печи. В настоящее время дуговые печи, питаемые током очень большой силы, применяются в ряде областей промышленности: для выплавки стали, чугуна, ферросплавов, бронзы, получения карбида кальция, окиси азота и т.д. В 1882 году Н. Н. Бенардосом дуговой разряд впервые был использован для резки и сварки металла. Разряд между неподвижным угольным электродом и металлом нагревает место соединения двух металлических листов (или пластин) и сваривает их. Этот же метод Бенардос применил для резания металлических пластин и получения в них отверстий. В 1888 году Н. Г. Славянов усовершенствовал этот метод сварки, заменив угольный электрод металлическим. Дуговой разряд нашел применение в ртутном выпрямителе, преобразующем переменный электрический ток в ток постоянного направления.
Информационные источники (основные учебники по предмету) 1.Мякишев Г.Я. Физика: учебник для 10 класс общеобразоват. учреждений: базовый уровнь / Г.Я. Мякишев, Б.Б. Буховцев, Н.Н Сотский; под ред. Н.А. Парфентьевой. – 2 изд., – М.: Просвещение, 2016. –416 с. 2.Мякишев Г.Я. Физика. 11 класс: учеб. для общеобразоват. учреждений: базовый уровнь / Г.Я. Мякишев, Б.Б. Буховцев, В.М. Чаругин; под ред. Н.А. Парфентьевой. – 3 изд. – М.: Просвещение, 2016. - 432 с. 3.Рымкевич А.П. Задачник: сборник для учащихся общеобразовательных учреждений. – М., «Дрофа» 2008. Ресурсы сети Интернет. Электронные учебники, обучающие программы 1.Мякишев Г.Я. Физика: учебник для 10 класс общеобразоват. учреждений: базовый и профил. уровни / Г.Я. Мякишев, Б.Б. Буховцев, Н.Н Сотский; под ред. В.И. Николаева, Н.А. Парфентьевой. – 19 изд., – М.: Просвещение, 2010. –366 с. 2.Мякишев Г.Я. Физика. 11 класс: учеб. для общеобразоват. учреждений: базовый и профил. уровни / Г.Я. Мякишев, Б.Б. Буховцев, В.М. Чаругин; под ред. Н.А. Парфентьевой. – 23 изд.,– М.: Просвещение, 2008. - 339 с. 3.Физика. Задачник 10-11 класс: пособие для общеобразовательных учреждений/ Рымкевич А.П. –10 изд., стереотип. М., «Дрофа» 2006.-188с. 4.1С: Образовательная коллекция. Открытая физика 1.1 «Открытая физика» http://www.physics.ru/ 5.«Виртуальный методический кабинет учителя физики и астрономии» http://www.gomulina.orc.ru/
Д.З. Изучите конспект и ответьте на вопросы: Что такое газовый разряд? 2. Условие возникновения несамостоятельного газового разряда? 3. Условие возникновения самостоятельного газового разряда? 4. Виды самостоятельного разряда? Уважаемый студент сфотографируйте конспект и пришлите на электронный адрес (dima. levchenko 02@ ramler. ru)
Тема урока: Плазма. Цель: Дать понятие плазмы. План. 1. Физическое объяснение плазмы и способы ее получения. Свойства плазмы. 3. Проявление плазмы в природе. 4. Отличие плазмы от газов. 5. Применение плазмы. Опорный конспект. Плазма – это ионизированный газ, содержащий электроны, а так же положительно и отрицательно заряженные ионы. Она является одним из четырех основных агрегатных состояний веществ. Впервые о плазме заговорил английский физик сэр Уильям Крикс в 1879 году. Предложенная им концепция активно развивалась и совершенствовалась, что наблюдается и сегодня. Существуют различные предположения, которые указывают на то, что плазма была открыта намного раньше. Об этом можно судить даже по древнему утверждению о существовании четырех стихий: земля, вода, воздух и огонь. Они тесно переплетаются с современным трактованием 4 агрегатных состояний: твердое, жидкое, газообразное и плазменное. В определенных смыслах можно вполне сопоставить плазму и огонь. Помимо получения плазмы в результате термической обработки вещества, его также можно выделить проводя бомбардировку газа быстрыми заряженными частицами. Для этого проводится облучение радиоактивными веществами. В таких случаях осуществляется выработка низкотемпературной плазмы. Также была разработана технология получения газоразрядной плазмы. Для этого через газ пропускается электрический ток, вызывающий его ионизацию. Ионизированные частицы переносят ток, что приводит к их дальнейшему разрушению. Получаемая в результате электрического воздействия плазма менее эффективна в плане сохранения жизнедеятельности, чем образованная от термической обработки. Это связано с меньшим нагревом и высокой скоростью охлаждения частиц, так как они постоянно контактируют с другими ионами, не получившими необходимого нагрева. Более сложный способ ее образования заключается в сильном сжатии вещества. Подобные методы воздействия приводят к сходу атомов со своих орбит. Возникающие в результате отдельные положительно и отрицательно заряженные частицы приобретают определенные свойства, которые могут применяться в различных сферах при обработке материалов. Свойства плазмы. Главным свойством плазмы является высокая электрическая проводимость, значительно превосходящая прочие агрегатные состояния веществ. При этом суммарный электрический заряд равен нулю. Плазма подвержена влиянию магнитного поля. Под его воздействием она способна концентрировать струю, что позволяет проводить контроль движения газа. Также для плазмы характерно корректирование взаимодействия. У обычного газа происходит сталкивание частиц по двое, а в случае с плазмой электроны сталкиваются чаще и крупными группами. Свойства плазмы могут отличаться в зависимости от ее разновидности. По термическим свойствам ее разделяют на 2 вида:
Для низкотемпературной плазмы характерен нагрев менее чем до 1 млн. Кельвинов. Высокотемпературный газ имеет температуру как минимум 1 млн. Кельвинов. Последняя разновидность плазмы принимает участие в термоядерном синтезе. Отличие плазмы от газов На первый взгляд может показаться, что плазма и газ это довольно взаимосвязанные агрегатные состояния, которые можно объединить в одно понятие. Все же существует ряд особенностей, позволяющие их разделить. В первую очередь можно отметить электрическую проводимость. У газа она крайне мала. Ярким примером будет воздух. Сам по себе он отличный диэлектрик, поэтому по нему электрический заряд не передается. Стоит его довести до состояния плазмы, как ситуация кардинально меняется, ведь по ней заряд передается вполне эффективно. Также плазму от газов отличает однородность частиц. Для газов характерно, что в их структуре присутствуют подобные друг к другу составляющие. Они постоянно двигаются и взаимодействуют между собой на сравнительно небольшом расстоянии. В случае же с плазмой в ней есть как минимум 2-3, а то и больше вида частиц. В ее составе наблюдаются электроны, ионы и нейтральные частицы. Их свойства отличаются между собой. У них может быть разная скорость или температура. Именно по этой причине для плазмы характерна неустойчивость и сложность управления, поскольку многие ее составляющие действуют отличительно от прочих. Где применяется плазма. В последнее время появилось довольно много приборов, устройство которых предусматривает применение плазмы. Впервые ионизированные газы начали использоваться при создании светотехники. Ярким тому примером станут газоразрядные лампы. Принцип действия таких лампочек заключается в передаче электрического тока через газ заключенный в колбе. В результате наблюдается ионизация с получением ультрафиолетового излучения. Последнее поглощается люминофором, что и вызывает его свечение в видимом для человеческого глаза диапазоне. Особо востребованной технологией является плазменная резка. Таким оборудованием создается разогретая струя, способная плавить металлы и практически все вещества, встречаемые на ее пути. Обычно такое оборудование превращает в ионизированный газ обыкновенную воду. Сначала она испаряется, после чего под воздействием электрического тока из нее формируется плазменный пучок. Принцип плазмы может применяться для осуществления передачи данных на расстояние. В связи с этим проводится активная разработка плазменных антенн. Данная идея запатентована еще в 1919 году, но так и не была полноценно применена вплоть до начало XXI века. Технические наработки испытания такого оборудования дают основание полагать, что эта технология придет на замену привычного для всех wi-fi соединения. Она обладает большей скоростью передачи данных, а также возможностью действия в большом радиусе. Проводимость плазмы превышает проводимость серебра, которое является одним из лучших твердых веществ для передачи зарядов. Также в промышленности началось внедрение технологии напыления расплавленного материала под воздействием плазменной струи. Металл, или другой материал, расплавляется, после чего подается на струю в плазму. В результате он распыляется, дополняя струю. После этого взаимодействия с плазмой прекращается, и материал оседает на требуемых поверхностях в виде тонкого покрытия. Этот метод позволяет провести обработку гораздо быстрее, чем в случае с электрохимическим методом. Ресурсы сети Интернет. Электронные учебники, обучающие программы 1.Мякишев Г.Я. Физика: учебник для 10 класс общеобразоват. учреждений: базовый и профил. уровни / Г.Я. Мякишев, Б.Б. Буховцев, Н.Н Сотский; под ред. В.И. Николаева, Н.А. Парфентьевой. – 19 изд., – М.: Просвещение, 2010. –366 с. 2.Мякишев Г.Я. Физика. 11 класс: учеб. для общеобразоват. учреждений: базовый и профил. уровни / Г.Я. Мякишев, Б.Б. Буховцев, В.М. Чаругин; под ред. Н.А. Парфентьевой. – 23 изд.,– М.: Просвещение, 2008. - 339 с. 3.Физика. Задачник 10-11 класс: пособие для общеобразовательных учреждений/ Рымкевич А.П. –10 изд., стереотип. М., «Дрофа» 2006.-188с. 4.1С: Образовательная коллекция. Открытая физика 1.1 «Открытая физика» http://www.physics.ru/ 5.«Виртуальный методический кабинет учителя физики и астрономии» http://www.gomulina.orc.ru/
Д.З.Выучить конспект и ответить на вопросы: 1. Физическое объяснение плазмы и способы ее получения? Свойства плазмы? 3. Проявление плазмы в природе? 4. Отличие плазмы от газов? 5. Где применяется плазма? Уважаемый студент сфотографируйте конспект и пришлите на электронный адрес (dima. levchenko 02@ ramler. ru)
апреля, группа№13, физика, урок№50.
|
||||
Последнее изменение этой страницы: 2021-01-08; просмотров: 91; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.144.255.247 (0.009 с.) |