Как вода охлаждает детали дизеля. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Как вода охлаждает детали дизеля.



Безаварийная и экономичная работа тепловоза окажется невозможной, если в системе охлаждения будет циркулировать вода, по своему качеству не отвечающая определенным требованиям.
Природные воды, как правило, не годятся для охлаждения дизеля, так как они содержат механические примеси (частицы глины, песка) и растворенные соли. В среднем 1 т природной воды имеет 300—500 г примесей. Такая вода вызывает коррозию металла, отложения накипи и шлама на охлаждаемых поверхностях цилиндровых втулок, крышек и других деталей.
Коррозия разрушает детали дизеля, а накипь и шлам затрудняют передачу тепла от металла к воде. Это вызывает перегрев деталей, повреждения и более интенсивный износ их, снижает экономичность дизеля. Необходимо, чтобы вода для системы охлаждения дизеля имела незначительное количество солей, была свободна от взвешенных веществ и содержала противокоррозионные присадки, в качестве которых применяются растворы некоторых химических соединений (нитрит натрия, жидкое стекло, каустическая сода и тринатрийфосфат).
В связи с этим для охлаждения дизелей тепловозов применяется конденсат определенной жесткости, получаемый при охлаждении отработавшего пара любой котельной установки с добавлением присадок.
Расход тепловозами воды в эксплуатации на испарение и утечки составляет 5—7 л на 100 км пробега.
Проследим путь воды в водяной системе тепловоза (рис. 98).

Рис. 98 Упрощенная схема водяной системы

Когда начинает работать дизель, сразу же приходит в действие и водяной насос, так как он связан с коленчатым валом шестеренной передачей. При вращении рабочего колеса насоса охлажденная в холодильнике вода центробежной силой (поэтому насос называется центробежным) отбрасывается к стенкам корпуса насоса, откуда по трубе нагнетается к дизелю. Охлаждая детали дизеля, вода нагревается и поступает в водяные секции холодильника. Здесь температура воды снижается на 2—10°С в зависимости от нагрузки дизеля и режима работы вентилятора. Охлажденная вода снова возвращается к насосу и дизелю.
Проследим теперь более подробно путь воды в водяной системе дизеля тепловоза 2ТЭ10Л (рис. 99).

Начнем с того, что вода, нагнетаемая центробежным насосом, при давлении 0,314 МПа (3,2 кгс/см2) на номинальном режиме работы дизеля 10Д100, т. е. при 850 об/мин коленчатого вала, попадает в водяные полости двух выпускных патрубков. Отсюда она проходит в водяные полости правого и левого выпускных (газовых) коллекторов, расположенных с двух сторон дизеля 10Д 100, и далее в охлаждающие полости выпускных коробок (рис. 100). Через переходные патрубки вода направляется в водяные рубашки всех десяти цилиндровых втулок дизеля. Каждая втулка охлаждается водой в средней части. Верхняя часть втулки, находящаяся в отсеке воздушного ресивера, нагревается меньше, поэтому водяного охлаждения не имеет, а охлаждается наддувочным воздухом.

Рис. 100. Схема охлаждения втулки цилиндра дизеля и коллектора

Охладив стенки указанных деталей, вода нагревается и поступает в отводящий водяной коллектор, расположенный вдоль дизеля. Из этого коллектора горячая вода направляется по трубопроводу к верхнему коллектору (см. рис. 99) холодильника и поступает во множество плоских трубок водяных секций (см. рис. 95), разделяясь, таким образом, на тонкие струйки. Проходя секции сверху вниз, вода через стенки трубок и пластины отдает тепло потоку воздуха, который их обдувает. Охлажденная вода из трубок секций попадает в нижний коллектор холодильника и по трубе снова засасывается водяным насосом для охлаждения деталей дизеля.
Самой верхней частью системы охлаждения является расширительный бачок, который наполнен водой. Обычно его устанавливают под крышей кузова тепловоза, т. е. выше дизеля и водяных секций. Благодаря такому расположению водяная система всегда заполнена водой; кроме того, пополняются возможные утечки и испарения из системы и компенсируется изменение объема воды при ее нагревании.
Итак, в описанной схеме вода, охлаждая детали дизеля, отдает свое тепло атмосферному воздуху, прогоняемому вентилятором через водяные секции тепловозного холодильника: она совершает замкнутый путь по одному кругу, или, как принято говорить, по одному контуру (см. рис. 98). Кроме того, в водяной системе есть трубопроводы небольшого диаметра для циркуляции воды через вентиляционно-отопительный агрегат (см. рис. 99), топливоподогреватель, терморегулятор гидропривода вентилятора, а также для отвода воздуха и пара в расширительный бачок.

ЧЕМ ОХЛАЖДАТЬ МАСЛО?

На первый взгляд целесообразно использовать для этого атмосферный воздух, подобно тому как охлаждается вода. Так оно и осуществлено на тепловозах старой постройки (ТЭЗ, ТЭ2, ТЭ1), у которых масляные секции устроены аналогично водяным секциям. Отличие в том, что в водяных секциях трубки размещены в шахматном порядке, в то время как масляные секции имеют коридорное расположение трубок. Масляные секции отличаются от водяных также количеством трубок (их больше) и поперечными размерами трубок (они увеличены). Сделано это для того, чтобы облегчить проход по трубкам более вязкого (по сравнению с водой) дизельного масла. При движении по трубкам секций горячее масло, обдуваемое атмосферным воздухом, охлаждается на 4—12°С. Пройдя масляные секции холодильника (рис. 101), оно возвращается охлажденным к трущимся деталям дизеля. Однако на новых тепловозах от охлаждения масла воздухом отказались. Почему?

Рис. 101. Схема масляной системы тепловоза

В трубках обычных масляных секций частицы масла движутся параллельно друг другу, не перемешиваясь между собой. Это объясняется тем, что масло имеет высокую вязкость и низкую скорость течения в трубках (около 0,25 м/с). Именно поэтому тепло от масла к стенке трубки передается плохо, примерно в 50—100 раз хуже, чем тепло от воды.
Соответственно и размеры масляного холодильника получаются в несколько раз больше, чем водяного, при одинаковой их теплоотдаче. Второй крупный недостаток масляных секций — низкая эксплуатационная надежность. Давление масла в секциях достаточно высокое — до 0,588 МПа (6 кгс/см2) при работе дизеля и достигает даже 0,98 МПа (10 кгс/см2) при пуске холодного дизеля [в водяных секциях внутреннее давление не превышает 0,147 МПа (1,5 кгс/см2)]. Само же масло из-за большой вязкости и малой скорости течения в трубках часто зимой застывает, вызывая температурные деформации трубок.
Высокие внутренние давления, температурные деформации трубок приводят к появлению трещин в их стенках и к течи масла. Как увеличить теплоотдачу? Надо повысить скорость перемещения масла в трубках. Тогда частицы масла придут в беспорядочное движение, будут перемешиваться между собой, завихряться. А в результате сильно увеличится теплоотдача и можно будет уменьшить число масляных секций, а значит, получить экономию меди. К сожалению, достигнуть высоких скоростей масла из-за большой вязкости его практически невозможно: очень возрастают сопротивления. Где же выход? Инженеры дали такой ответ на этот вопрос. Нужно вызвать искусственное завихрение (турбулизацию) потока. Для этого внутри трубок (рис. 102) укрепляют специальные вставки, напоминающие решетки (турбулизаторы). При наличии таких вставок-решеток частицы масла даже при небольшой скорости (0,2—0,3 м/с) будут интенсивно перемешиваться, что приведет к большему (в 2,5—3 раза) теплообмену по сравнению, с теплообменом без перемешивания частиц масла между собой (без турбулизаторов).

Рис. 102. Трубка со вставками-турболизаторами

Такие холодильники устанавливались на тепловозах ТЭ10, на первых тепловозах ТЭП60, 2ТЭ10Л и опытных тепловозах ТЭЗ и позволили снизить расход меди на 1,5 т на тепловоз. Однако сложность изготовления, а главное, низкая эксплуатационная надежность и трудность очистки при ремонте побудили прекратить производство секций с турбулизацией потока масла. Конструкторы в поисках решения проблемы повышения надежности сокращали в зимних условиях количество включенных масляных секций, пробовали подогревать воздух перед фронтом холодильника и проводили другие мероприятия. Однако наиболее перспективным оказался водомасляный теплообменник.

ВОДОМАСЛЯНЫЙ ТЕПЛООБМЕННИК

Такой теплообменник получает все большее распространение на тепловозах. Дело в том, что интенсивность передачи тепла от масла к воде намного выше, чем от масла к воздуху. Благодаря этому водяной теплообменник компактнее и легче, чем воздушный. Замена 2880 медных оребренных трубок (тепловоз ТЭЗ) компактным теплообменником позволяет, кроме того, сэкономить значительное количество цветного металла. А раз так, то можно увеличить толщину трубок до 1 мм (толщина трубок в водяной секции 0,55 мм), т. е. повысить прочность и надежность водомасляного теплообменника. Если к этому добавить, что температура атмосферного воздуха в нашей стране колеблется в очень широком диапазоне (от +45 до — 55°С), а сам воздух, охлаждающий секции, нагревается, то станет ясно, что масловоздушные секции работают в неблагоприятных температурных условиях, что приводит к деформациям трубок и повреждению секций.
Где размещают водомасляный теплообменник, видно на рис. 103.

Рис. 103. Схема размещения водомасляного теплообменника

Охлаждающая вода проходит внутри вертикальных трубок (рис. 104), укрепленных в отверстиях верхней и нижней досок (решеток), а масляный поток направляется поперек этих трубок и при этом делает несколько поворотов (от одной стороны корпуса теплообменника к другой), так как вынужден огибать лабиринт из поперечных перегородок. Встречая на своем пути трубки с водой, масло отдает им часть тепла.
Итак, водомасляный теплообменник обладает хорошими качествами. Но масло и вода — враги. Если вода проникнет в масло, оно потеряет смазочные качества; если масло просочится в воду, произойдет замасливание охлаждаемых поверхностей цилиндровых втулок, крышек цилиндров дизеля, внутренних поверхностей трубок холодильника. Детали дизеля, окутанные масляной пленкой, плохо проводящей тепло, будут охлаждаться недостаточно и могут выйти из строя из-за чрезмерного перегревания. Этому будет способствовать и перегрев воды, плохо охлаждающейся в замасленном холодильнике. Чтобы этого не случилось, трубки должны быть соединены с решетками не только прочно, но, что особенно важно, герметично: технологам приходится решать сложную задачу.

Рис. 104. Схема устройства и работы водомасляного теплообменника

Вот почему концы трубок не только развальцовывают в отверстиях трубных решеток, но и припаивают к ним посредством погружения в расплавленный припой. В теплообменнике неподвижно устанавливают только одну трубную решетку. Вторая трубная решетка, к которой присоединены противоположные концы трубок, может свободно перемещаться относительно корпуса теплообменника. Изменение температуры не мешает трубкам свободно расширяться или сжиматься. Поэтому они не испытывают температурных напряжений, которые так пагубно сказываются на масловоздушных секциях.
Для охлаждения воды, используемой в свою очередь для отвода тепла от масла, применяют специальный водовоздушный холодильник. Естественно, это несколько усложняет оборудование тепловоза. Однако эта проблема решается наиболее просто, если применять на тепловозах дизели, которые могут надежно работать при повышенных температурах масла (до 95 — 100°С).
В этом случае масло охлаждается водой из системы охлаждения дизеля, поэтому отпадает необходимость в применении отдельного водовоздушного холодильника тепловоза. Например, на тепловозах ТГ102 водовоздушные холодильники служат лишь для охлаждения воды дизелей. Эта же вода пропускается через водомасляные холодильники дизеля и гидропередачи и охлаждает в них масло. Система водяного охлаждения имеет всего один контур и соответственно один насос.
Опыт эксплуатации тепловозов с водомасляными теплообменниками показал их высокую надежность.
Принципиальная схема охлаждения масла с трубчатым теплообменником показана на рис. 105.



Поделиться:


Последнее изменение этой страницы: 2021-01-08; просмотров: 169; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.135.183.89 (0.01 с.)