Что такое вирион, капсид, нуклеокапсид, тип симметрии, суперкапсид? 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Что такое вирион, капсид, нуклеокапсид, тип симметрии, суперкапсид?



Вопросы к итоговому контролю

«Общая вирусология и генетика МО»

 

Ответы взяты из учебников Коротяев, Бабичев – 2008 г. в., методическое руководство КубГМУ.

 

1. Чем вирусы отличаются от всех остальных живых организмов? (Бабичев, стр. 298)

Вирусы – особое царство ультрамикроскопических размеров организмов, обладающих только одним типом нуклеиновых кислот, лишенных собственных систем синтеза белка и мобилизации энергии и являющихся поэтому абсолютными внутриклеточными паразитами (А. И. Коротяев).

 

Основные свойства вирусов, по которым они отличаются от всех остальных живых существ, следующие:

1. Ультрамикроскопические размеры.

2. Вирусы содержат нуклеиновую кислоту только одного типа ­­­— или ДНК, или РНК. Все другие организмы содержат нуклеиновые кислоты обоих типов, а геном у них представлен только ДНК.

3. Вирусы не способны к росту и бинарному делению.

4. Вирусы размножаются путем воспроизводства себя из собственной геномной нуклеиновой кислоты. Размножение всех прочих организмов включает стадии бинарного деления клеток.

5. У вирусов отсутствуют собственные системы мобилизации энергии.

6. У вирусов нет собственных белоксинтезирующих систем.

7. В связи с отсутствием собственных систем синтеза белка и мобилизации энергии вирусы являются абсолютными внутриклеточными паразитами. Средой обитания вирусов являются бактерии, клетки растений, животных и человека.

 

Что такое вирион, капсид, нуклеокапсид, тип симметрии, суперкапсид?

(Бабичев, стр. 298)

Вирион – это сформированная вирусная частица. Вирион состоит из геномной нуклеиновой кислоты, окруженной одной или двумя оболочками.

Капсид (греч. capsa – ящик) – это оболочка, в которую упакована геномная нуклеиновая кислота.

Нуклеокапсид – это форма организации вируса, при которой они состоят только из нуклеиновой кислоты и белковой оболочки, построенной из идентичных пептидных молекул.

Суперкапсид («пеплос») – представляет собой обычную биологическую мембрану, состоящую из двух слоев липидов, имеющих клеточное происхождение, и заключенных в них гликозилированных суперкапсидных вирусных белков, которые выступают над наружной поверхностью вириона в виде своеобразных шипов.

 

Тип симметрии – это способ укладки капсомеров в капсиде вириона.

 

По строению вирусы можно разделить на четыре типа, которые различаются по характеру упаковки морфологических субъединиц:

1) вирусы со спиральной симметрией;

2) изометрические вирусы с кубической симметрией;

3) вирусы с бинарной симметрией, например фаги: у них головка имеет кубический тип симметрии, а хвостик – спиральный;

4) более сложно организованные вирусы, имеющие вторую оболочку.

 

3. Критерии классификации вирусов. (Методичка, стр. 43)

 

1. Нуклеиновая кислота: тип, число нитей, процентное содержа­ние, молекулярная масса, содержание гуанина и цитозина.

2. Морфология: тип симметрии или псевдосимметрия, число капсомеров для вирусов с кубической симметрией, наличие внешней липопротеидной оболочки, форма, размеры вирионов.

3. Биофизические свойства: константа седиментации, плавучая плотность.

4. Белки: количество структурных белков и их локализация, аминокислотный состав.

5. Липиды.

6. Размножение в тканевых культурах: особенности репликации.

7. Круг поражаемых хозяев: особенности патогенеза инфекционного процесса; онкогенные свойства.

8. Устойчивость к физическим и химическим факторам (гамма-лучи, термоинактивация при 37° С и 56° С, действие жирорастворителей и отдельных катионов).

9. Антигенные свойства.

 

4. Типы вирусных геномов. (Бабичев, стр. 309)

 

РНК-геномы

1. Одноцепочечная нефрагментированная РНК, обладающая матричной актив­ностью (позитивная, или +РНК). Пикорнавирусы, флавивирусы, тогавирусы и др.

2. Одноцепочечная нефрагментированная РНК, не обладающая матричной активностью (негативная, или –РНК). Вирион имеет в своем составе фермент РНК-зависимую-РНК-полимеразу (транскриптазу). Она синтезирует на вирионной РНК матричную РНК, необходимую для трансляции вирусспецифических белков. Парамиксовирусы, рабдовирусы и др.

3. Одноцепочечная фрагментированная РНК, не обладающая матричной актив­ностью (негативная РНК); вирион имеет транскриптазу. Ортомиксовирусы (РНК вириона состоит из 8 фрагментов).

4. Двухцепочечная фрагментированная РНК; вирион имеет транскриптазу. Реовирусы (10 фрагментов).

5. Вирусы, геном которых представлен двумя идентичными нитями позитивной РНК (диплоидный геном). Вирионы имеют обратную транскриптазу. Ретровирусы.

6. Одноцепочечная кольцевая РНК. Такой геном имеет только один вирус — вирус дельта-гепатита. Это дефектный вирус, для размножения его необходим ви­рус-помощник (вирус гепатита В).

ДНК-геномы

1.Одноцепочечная линейная ДНК. Парвовирусы: «+» и «—» нити находятся в разных вирионах, но транскрибируется только «—» нить.

2. Одноцепочечная кольцевая ДНК. Фаги М13, φX174.

3. Двухцепочечная линейная ДНК. Вирусы герпеса и др.; ранняя мРНК синтези­руется в ядре клеточным ферментом.

4. Двухцепочечная кольцевая ДНК. Паповавирусы, вирус гепатита В и др.; ранняя мРНК синтезируется в ядре клеточным ферментом.

5. Двухцепочечная ДНК с ковалентно связанным терминальным гидрофобным белком. Аденовирусы; ранняя мРНК синтезируется клеточным ферментом в ядре.

6. Двухцепочечная ДНК, замкнутая на каждом конце ковалентной связью. Вирус оспы; размножение происходит в цитоплазме, ранняя мРНК синтезируется вирус­ным ферментом.

 

5. Методы культивирования вирусов. (Бабичев, стр. 306, Методичка, стр. 43)

 

Для культивирования и выделения вирусов используют следующие методы:

а) заражение лабораторных животных;

б) заражение куриных эмбрионов;

в) заражение культур тканей (клеток).

 

Таким образом, для выделения чистых культур вирусов в настоящее время используют чаще всего заражение куриных эмбрионов, первично-трипсинизированных и перевиваемых культур клеток.

 

Широкое распространение получил предложенный в 1952 г. Р. Дюльбекко метод бляшек (негативных колоний), позволяющий производить количественное определение вирусов. Для выделения вирусов монослой клеток после удаления питательной среды заражают вируссодержащим материалом и покрывают слоем агара, содержащего индикатор нейтральный красный. Чашки (флаконы) инкубируют при температуре 37 °C. Через 48 – 96 ч выявляются пятна-бляшки. Они имеют диаметр 1 – 3 мм и выглядят неокрашенными на розовом фоне. Пятна возникают за счет цитопатического действия вируса. Этот метод позволяет непосредственно обнаруживать рост вирусов.

6. Заражение лабораторных животных. Правила, способы. (Методичка, стр. 39)

Методы заражения животных разнообразны: внутрибрюшинный, внутривенный, внутримышечный, интраназальный, заражение в мозг и другие.  

 

Заражение в мозг (метод применяют при работе с нейротропными вирусами). Для заражения чаще используют белых мышей. Левой рукой плотно прижимают мышь к столу, большим и указательным пальцами оттягивают кожу головы назад. Туберкулиновым шприцем с предохранительной муфтой на игле прокалывают лобную кость несколько латеральнее средней линии и вводят 0,02-0,03 мл материала. Игла вводится на глубину 1,5-2 мм, при этом отчетливо ощущается "провал" в полость черепа.

 

При заражении новорожденных мышей (2-3-дневного возраста) их лучше брать руками в перчатках, чтобы после заражения мышата не имели постороннего запаха (пота, дезинфицирующих веществ, антибиотиков и т.д.), так как самка съедает мышат, имеющих посторонний запах. Материал вводят в количестве 0,01 мл. Вытекающую жидкость удаляют сухим стерильным ватным тампоном без дезинфицирующих ве­ществ. После заражения мышат помещают в отдельную банку (в свое гнездо), а через 20-30 мин подсаживают к ним самку.

 

Больных мышат самка также съедает. Поэтому надо уловить момент извлечения зараженных животных для завершения опыта. Первые два дня просматривают мышат 1-2 раза в день, а затем чаще. Через 3-4 дня здоровый мышонок в два раза больше зараженного.

7. Заражение куриных эмбрионов. Правила, способы. (Методичка, стр. 41)

Существует несколько методов заражения куриных эмбрионов: на хорионаллантоисную оболочку, в аллантоисную полость, амниотическую полость, в желточный мешок. Для заражения используют эмбрионы 5-11-дневного возраста. Перед заражением эмбрионы просматривают в темной комнате при помощи овоскопа для проверки их жизнеспособности (живые эмбрионы подвижны с хорошо развитыми сосудами) и определения воздушной камеры и места расположения эмбриона. Место на столе, где производят манипуляции, покрывают салфеткой, смоченной в растворе хлорамина.

Заражение на хорионаллантоисную оболочку. Яйцо устанавливают в штативе в вертикальном положении тупым концом вверх. Скорлупу над воздушной камерой обрабаты­вают спиртом, йодом, повторно спиртом, обжигают, прокалывают ножни­цами небольшое отверстие, через которое в полость воздушного мешка вводят одну браншу ножниц и срезают скорлупу над ним. Затем анатомическим пинцетом захватывают в складку и осторожно снимают внутренний листок подскорлуповой оболочки. Под ней находится хорионаллантоисная оболочка, на которую пастеровской пипеткой наносят исследуемый материал в количестве 0,2-0,5 мл. Отверстие скорлупы закрывают стерильным стеклянным колпачком, который закрепляют на яйце расплавленным парафином. Зараженное яйцо помещают в термостат при 37° на 48 часов.

3аражение в аллантоисную полость. После подготовительной работы скорлупу прокалывают над воздушной камерой и через небольшое отверстие вводят иглой шприца или пастеровской пипеткой на глубину 1-1,5 см материал в объеме 0,1-0,2 мл. Отверстие заливают парафи­ном.

Заражение в амниотическую полость. После удаления скорлупы над воздушной камерой бранши пинцета вводят в аллантоисную полость в направлении эмбриона на глубину 2-2,5 см, захватывают амниотическую оболочку, выводят ее из глубины, прокалывают иглой шприца и в амниотическую полость вводят материал в количестве 0,1 мл. Отверстие в скорлупе закрывают колпачком и парафинируют.

Заражение в желточный мешок (этим методом чаще пользуются для выделения риккетсий). Просмотреть 5-8-дневный эмбрион с помощью овоскопа, отметить границу воздушной камеры и место расположения эмбриона. Исследуемый материал вводят эмбрионам длинной иглой (4-5 см) через небольшое отверстие в скорлупе над воздушной камерой на глубину 2-3 см. При этом надо не повредить зародыш. Во время манипуляции он должен находиться ниже желточного мешка.

Ввести эмбриону на хорионаллантоисную оболочку вирус осповакцины или в аллантоисную полость вирус гриппа.

 

Общая трансдукция

Механизм ее заключается в том, что в процессе внутриклеточного размножения фага в его головку может быть случайно включен вместо фаговой ДНК фрагмент бактериальной ДНК, равный по длине фаговой. Таким образом, в процессе репродукции фага возникают дефектные вирионы, у которых в головках вместо собственной геномной ДНК содержится фрагмент ДНК бактерии. Такие фаги сохраняют инфекционные свойства. Они адсорбируются на бактериальной клетке, вводят в нее ДНК, содержащуюся в головке, но при этом размножения фага не происходит. Введенная в клетку реципиента донорная ДНК (фрагмент хромосомы донора), если она содержит гены, отсутствующие у реципиента, наделяет его новым признаком. Этот признак будет зависеть от того, какой ген (гены) попал в головку трансдуцирующего фага. В случае рекомбинации привнесенного фагом фрагмента ДНК донора с хромосомой клетки-реципиента этот признак наследственно закрепляется.

 

Специфическая трансдукция

Отличается от неспецифической тем, что в этом случае трансдуцирующие фаги всегда переносят только определенные гены, а именно, те из них, которые располагаются в хромосоме лизогенной клетки слева от attL или справа от attR. Специфическая трансдукция всегда связана с интеграцией умеренного фага в хромосому клетки-хозяина.

 

Трансдуцирующий фаг в случае инфицирования реципиентной клетки интегрируется в ее хромосому и привносит в нее новый ген (новый признак), опосредуя не только лизогенизацию, но и лизогенную конверсию.

 

Таким образом, если при неспецифической трансдукции фаг является только пассивным переносчиком генетического материала, то при специфической фаг включает этот материал в свой геном и передает его, лизогенизируя бактерии, реципиенту.

32. Что такое плазмиды, их биологические особенности. (Бабичев, стр. 127)

 

Плазмиды – наипростейшие живые существа, лишенные белковой оболочки и представленные только совокупностью организованных генов, определяющих их специфические свойства, наследственность, а также дополнительные признаки, которыми они наделяют клеткуносителя.

 

Главные отличия плазмид от вирусов следующие:

1. Геном плазмид представлен только двунитевой ДНК, у вирусов же имеется более 10 вариантов РНК– и ДНК-геномов. Правда, у некоторых грамположительных бактерий плазмиды существуют не только в виде двунитевых молекул ДНК, но и в виде однонитевых. Однако каждая из них соответствует одной из двух нитей плазмидной ДНК (на долю таких однонитевых молекул приходится не более 1/3 общего количества копий плазмиды), и в результате репликации, происходящей по типу «крутящегося кольца», однонитевая молекула превращается в двунитевую молекулу плазмидной ДНК.

2. Плазмиды, в отличие от вирусов и других микроорганизмов, вообще не имеют никакой оболочки. Они представляют собой «голые» геномы. Это их главная биологическая особенность.

3. В связи с отсутствием белковой оболочки размножение плазмид происходит только путем саморепликации их ДНК и не требует синтеза структурных белков и процессов самосборки.

4. Средой обитания вирусов являются клетки бактерий, растений и животных. Средой обитания плазмид – только бактерии.

5. Плазмиды обладают системами генов, которые наделяют их способностью к самопереносу или к мобилизации на перенос из клетки в клетку.

6. Плазмиды и вирусы отличаются друг от друга и по тем последствиям, к которым приводит инфицирование ими клеток. Заражение вирусами в большинстве случаев приводит к подавлению функционирования клеточного генома. Вирулентный вирус размножается в клетке и вызывает ее гибель или нарушает нормальное функционирование (при персистировании). Только умеренные фаги при лизогенизации бактерий наделяют их дополнительными свойствами.

 

Плазмиды подразделяются на конъюгативные, т,е. способные к са­мопереносу, и неконъюгативные, перенос которых осуществляется конъюгативными плазмидами.

Передача плазмид среди бактерий происходит как по вертикали, так и по горизонтали, обеспечивая их эпидемическое распространение.

 

Специфические функции плазмид

1.Саморепликация.

2.Конъюгативность, или способность к самопереносу (у конъюгативных плазмид).

3.Мобилизуемость, или способность к мобилизации на перенос конъюгативными плазмидами (у неконъюгативных плазмид).

4.Контроль явления несовместимости.

5.Контроль явления поверхностного исключения.

6.Контроль числа копий на хромосому клетки-хозяина.

7.Контроль стабильности поддержания и распределения между дочерними клетками.

8.Способность наделять клетку-хозяина дополнительными важны­ми селективными свойствами. Фенотипические проявления этих свойств определяют класс плазмид.

33. Основные классы плазмид. (Бабичев, стр. 128)

Химический состав.

Фаги состоят из нуклеиновой кислоты и белков. Большинство из них содержит 2хнитевую ДНК, замкнутую в кольцо. Некоторые фаги содержат одну нить ДНК или РНК.

Оболочка фагов – капсид, состоит из упорядоченных белковых субъединиц – капсомеров.

 

Морфология фага.

Размеры – 20 – 200 нм. Большинство фагов имеют форму головастиков. Наиболее сложно устроенные фаги состоят из многогранной головки, в которой располагается нуклеиновая кислота, шейка и отростки. На конце отростка располагается базальная пластинка, с отходящими от нее нитями и зубцами. Эти нити и зубцы служат для прикрепления фага к оболочке бактерии. У наиболее сложноорганизованных фагов в дистальной части отростка, содержится фермент – лизоцим. Этот фермент способствует растворению оболочки бактерий при проникновении фаговой НК в цитоплазму. У многих фагов отросток окружен чехлом, который у некоторых фагов может сокращаться.

 

35. Типы инфекций, вызываемых бактериофагами. Их особенности. (Бабичев, стр. 318)

 

Различают фаги инфекционные, т. е. способные вызвать разные формы фаговой инфекции, и неинфекционные (вегетативные), или незрелые, фаги, находящиеся еще в стадии размножения. В свою очередь инфекционные фаги разделяют на покоящиеся (находящиеся вне клетки), вирулентные – способные вызвать продуктивную форму инфекции, и умеренные фаги – способные вызывать не только продуктивную, но и редуктивную фаговую инфекцию.

Что такое фаготипирование?

Фаготипирование – это методика определения источников заражения при мониторинге окружающей среды и в частности водоемов.

Суть ее заключается в маркировке инфекционных штаммов бактерий при помощи бактериофагов. Другими словами, фаготипирование необходимо для идентификации штаммов бактерий, вызвавших тот или иной всплеск инфекционных заболеваний, а также определения состояния водоемов для купания или источников водных ресурсов на предмет их заражения бактериями.

Вопросы к итоговому контролю

«Общая вирусология и генетика МО»

 

Ответы взяты из учебников Коротяев, Бабичев – 2008 г. в., методическое руководство КубГМУ.

 

1. Чем вирусы отличаются от всех остальных живых организмов? (Бабичев, стр. 298)

Вирусы – особое царство ультрамикроскопических размеров организмов, обладающих только одним типом нуклеиновых кислот, лишенных собственных систем синтеза белка и мобилизации энергии и являющихся поэтому абсолютными внутриклеточными паразитами (А. И. Коротяев).

 

Основные свойства вирусов, по которым они отличаются от всех остальных живых существ, следующие:

1. Ультрамикроскопические размеры.

2. Вирусы содержат нуклеиновую кислоту только одного типа ­­­— или ДНК, или РНК. Все другие организмы содержат нуклеиновые кислоты обоих типов, а геном у них представлен только ДНК.

3. Вирусы не способны к росту и бинарному делению.

4. Вирусы размножаются путем воспроизводства себя из собственной геномной нуклеиновой кислоты. Размножение всех прочих организмов включает стадии бинарного деления клеток.

5. У вирусов отсутствуют собственные системы мобилизации энергии.

6. У вирусов нет собственных белоксинтезирующих систем.

7. В связи с отсутствием собственных систем синтеза белка и мобилизации энергии вирусы являются абсолютными внутриклеточными паразитами. Средой обитания вирусов являются бактерии, клетки растений, животных и человека.

 

Что такое вирион, капсид, нуклеокапсид, тип симметрии, суперкапсид?

(Бабичев, стр. 298)

Вирион – это сформированная вирусная частица. Вирион состоит из геномной нуклеиновой кислоты, окруженной одной или двумя оболочками.

Капсид (греч. capsa – ящик) – это оболочка, в которую упакована геномная нуклеиновая кислота.

Нуклеокапсид – это форма организации вируса, при которой они состоят только из нуклеиновой кислоты и белковой оболочки, построенной из идентичных пептидных молекул.

Суперкапсид («пеплос») – представляет собой обычную биологическую мембрану, состоящую из двух слоев липидов, имеющих клеточное происхождение, и заключенных в них гликозилированных суперкапсидных вирусных белков, которые выступают над наружной поверхностью вириона в виде своеобразных шипов.

 

Тип симметрии – это способ укладки капсомеров в капсиде вириона.

 

По строению вирусы можно разделить на четыре типа, которые различаются по характеру упаковки морфологических субъединиц:

1) вирусы со спиральной симметрией;

2) изометрические вирусы с кубической симметрией;

3) вирусы с бинарной симметрией, например фаги: у них головка имеет кубический тип симметрии, а хвостик – спиральный;

4) более сложно организованные вирусы, имеющие вторую оболочку.

 

3. Критерии классификации вирусов. (Методичка, стр. 43)

 

1. Нуклеиновая кислота: тип, число нитей, процентное содержа­ние, молекулярная масса, содержание гуанина и цитозина.

2. Морфология: тип симметрии или псевдосимметрия, число капсомеров для вирусов с кубической симметрией, наличие внешней липопротеидной оболочки, форма, размеры вирионов.

3. Биофизические свойства: константа седиментации, плавучая плотность.

4. Белки: количество структурных белков и их локализация, аминокислотный состав.

5. Липиды.

6. Размножение в тканевых культурах: особенности репликации.

7. Круг поражаемых хозяев: особенности патогенеза инфекционного процесса; онкогенные свойства.

8. Устойчивость к физическим и химическим факторам (гамма-лучи, термоинактивация при 37° С и 56° С, действие жирорастворителей и отдельных катионов).

9. Антигенные свойства.

 

4. Типы вирусных геномов. (Бабичев, стр. 309)

 

РНК-геномы

1. Одноцепочечная нефрагментированная РНК, обладающая матричной актив­ностью (позитивная, или +РНК). Пикорнавирусы, флавивирусы, тогавирусы и др.

2. Одноцепочечная нефрагментированная РНК, не обладающая матричной активностью (негативная, или –РНК). Вирион имеет в своем составе фермент РНК-зависимую-РНК-полимеразу (транскриптазу). Она синтезирует на вирионной РНК матричную РНК, необходимую для трансляции вирусспецифических белков. Парамиксовирусы, рабдовирусы и др.

3. Одноцепочечная фрагментированная РНК, не обладающая матричной актив­ностью (негативная РНК); вирион имеет транскриптазу. Ортомиксовирусы (РНК вириона состоит из 8 фрагментов).

4. Двухцепочечная фрагментированная РНК; вирион имеет транскриптазу. Реовирусы (10 фрагментов).

5. Вирусы, геном которых представлен двумя идентичными нитями позитивной РНК (диплоидный геном). Вирионы имеют обратную транскриптазу. Ретровирусы.

6. Одноцепочечная кольцевая РНК. Такой геном имеет только один вирус — вирус дельта-гепатита. Это дефектный вирус, для размножения его необходим ви­рус-помощник (вирус гепатита В).

ДНК-геномы

1.Одноцепочечная линейная ДНК. Парвовирусы: «+» и «—» нити находятся в разных вирионах, но транскрибируется только «—» нить.

2. Одноцепочечная кольцевая ДНК. Фаги М13, φX174.

3. Двухцепочечная линейная ДНК. Вирусы герпеса и др.; ранняя мРНК синтези­руется в ядре клеточным ферментом.

4. Двухцепочечная кольцевая ДНК. Паповавирусы, вирус гепатита В и др.; ранняя мРНК синтезируется в ядре клеточным ферментом.

5. Двухцепочечная ДНК с ковалентно связанным терминальным гидрофобным белком. Аденовирусы; ранняя мРНК синтезируется клеточным ферментом в ядре.

6. Двухцепочечная ДНК, замкнутая на каждом конце ковалентной связью. Вирус оспы; размножение происходит в цитоплазме, ранняя мРНК синтезируется вирус­ным ферментом.

 

5. Методы культивирования вирусов. (Бабичев, стр. 306, Методичка, стр. 43)

 

Для культивирования и выделения вирусов используют следующие методы:

а) заражение лабораторных животных;

б) заражение куриных эмбрионов;

в) заражение культур тканей (клеток).

 

Таким образом, для выделения чистых культур вирусов в настоящее время используют чаще всего заражение куриных эмбрионов, первично-трипсинизированных и перевиваемых культур клеток.

 

Широкое распространение получил предложенный в 1952 г. Р. Дюльбекко метод бляшек (негативных колоний), позволяющий производить количественное определение вирусов. Для выделения вирусов монослой клеток после удаления питательной среды заражают вируссодержащим материалом и покрывают слоем агара, содержащего индикатор нейтральный красный. Чашки (флаконы) инкубируют при температуре 37 °C. Через 48 – 96 ч выявляются пятна-бляшки. Они имеют диаметр 1 – 3 мм и выглядят неокрашенными на розовом фоне. Пятна возникают за счет цитопатического действия вируса. Этот метод позволяет непосредственно обнаруживать рост вирусов.

6. Заражение лабораторных животных. Правила, способы. (Методичка, стр. 39)

Методы заражения животных разнообразны: внутрибрюшинный, внутривенный, внутримышечный, интраназальный, заражение в мозг и другие.  

 

Заражение в мозг (метод применяют при работе с нейротропными вирусами). Для заражения чаще используют белых мышей. Левой рукой плотно прижимают мышь к столу, большим и указательным пальцами оттягивают кожу головы назад. Туберкулиновым шприцем с предохранительной муфтой на игле прокалывают лобную кость несколько латеральнее средней линии и вводят 0,02-0,03 мл материала. Игла вводится на глубину 1,5-2 мм, при этом отчетливо ощущается "провал" в полость черепа.

 

При заражении новорожденных мышей (2-3-дневного возраста) их лучше брать руками в перчатках, чтобы после заражения мышата не имели постороннего запаха (пота, дезинфицирующих веществ, антибиотиков и т.д.), так как самка съедает мышат, имеющих посторонний запах. Материал вводят в количестве 0,01 мл. Вытекающую жидкость удаляют сухим стерильным ватным тампоном без дезинфицирующих ве­ществ. После заражения мышат помещают в отдельную банку (в свое гнездо), а через 20-30 мин подсаживают к ним самку.

 

Больных мышат самка также съедает. Поэтому надо уловить момент извлечения зараженных животных для завершения опыта. Первые два дня просматривают мышат 1-2 раза в день, а затем чаще. Через 3-4 дня здоровый мышонок в два раза больше зараженного.

7. Заражение куриных эмбрионов. Правила, способы. (Методичка, стр. 41)

Существует несколько методов заражения куриных эмбрионов: на хорионаллантоисную оболочку, в аллантоисную полость, амниотическую полость, в желточный мешок. Для заражения используют эмбрионы 5-11-дневного возраста. Перед заражением эмбрионы просматривают в темной комнате при помощи овоскопа для проверки их жизнеспособности (живые эмбрионы подвижны с хорошо развитыми сосудами) и определения воздушной камеры и места расположения эмбриона. Место на столе, где производят манипуляции, покрывают салфеткой, смоченной в растворе хлорамина.

Заражение на хорионаллантоисную оболочку. Яйцо устанавливают в штативе в вертикальном положении тупым концом вверх. Скорлупу над воздушной камерой обрабаты­вают спиртом, йодом, повторно спиртом, обжигают, прокалывают ножни­цами небольшое отверстие, через которое в полость воздушного мешка вводят одну браншу ножниц и срезают скорлупу над ним. Затем анатомическим пинцетом захватывают в складку и осторожно снимают внутренний листок подскорлуповой оболочки. Под ней находится хорионаллантоисная оболочка, на которую пастеровской пипеткой наносят исследуемый материал в количестве 0,2-0,5 мл. Отверстие скорлупы закрывают стерильным стеклянным колпачком, который закрепляют на яйце расплавленным парафином. Зараженное яйцо помещают в термостат при 37° на 48 часов.

3аражение в аллантоисную полость. После подготовительной работы скорлупу прокалывают над воздушной камерой и через небольшое отверстие вводят иглой шприца или пастеровской пипеткой на глубину 1-1,5 см материал в объеме 0,1-0,2 мл. Отверстие заливают парафи­ном.

Заражение в амниотическую полость. После удаления скорлупы над воздушной камерой бранши пинцета вводят в аллантоисную полость в направлении эмбриона на глубину 2-2,5 см, захватывают амниотическую оболочку, выводят ее из глубины, прокалывают иглой шприца и в амниотическую полость вводят материал в количестве 0,1 мл. Отверстие в скорлупе закрывают колпачком и парафинируют.

Заражение в желточный мешок (этим методом чаще пользуются для выделения риккетсий). Просмотреть 5-8-дневный эмбрион с помощью овоскопа, отметить границу воздушной камеры и место расположения эмбриона. Исследуемый материал вводят эмбрионам длинной иглой (4-5 см) через небольшое отверстие в скорлупе над воздушной камерой на глубину 2-3 см. При этом надо не повредить зародыш. Во время манипуляции он должен находиться ниже желточного мешка.

Ввести эмбриону на хорионаллантоисную оболочку вирус осповакцины или в аллантоисную полость вирус гриппа.

 



Поделиться:


Последнее изменение этой страницы: 2021-01-08; просмотров: 394; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.119.104.238 (0.106 с.)