Рассеянные и шаровые звездные скопления и ассоциации 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Рассеянные и шаровые звездные скопления и ассоциации



 

Рассеянные и шаровые звездные скопления отличаются друг от друга по виду примерно так же, как неорганизованные толпы людей отличаются от дивизий солдат, построенных в строгом порядке.

Рассеянные скопления находятся внутри нашей звездной системы ‑ Галактики и расположены в ней вперемежку с одиночными звездами: они как бы крупные населенные пункты внутри страны. За их положение в пространстве их иногда и называют галактическими, а за слабую концентрацию звезд к центру скопления их и назвали рассеянными. Звезд в них бывает тысячи, и разбросаны они в пространстве без особой правильности, как палатки цыганского табора.

Примером рассеянных скоплений являются Плеяды. В народе их называют где Стожарами, где ‑ Утиным гнездышком, а где Волосожаром. Осенью они восходят вечером, а зимой вечером стоят уже высоко в небе. Невооруженный глаз средней зоркости видит в этой кучке шесть звезд, а зоркий глаз ‑ от семи до одиннадцати. В поле же зрения телескопа здесь мерцают сотни звезд всевозможного блеска. Принадлежность звезд к данному скоплению обнаруживается из общности их движения в пространстве. Так можно бывает выделить звезды, более к нам близкие или далекие, случайно проектирующиеся на звездное скопление.

Измеряя видимые звездные величины звезд в скоплениях и их спектры или определяя цвета, что доступнее и проще, можно составить для них подобие диаграммы светимостей ‑ спектров. Она чаще всего похожа на такую же диаграмму, составленную для ближайших окрестностей Солнца. Диаграмма эта обычно оказывается неполной из‑за отсутствия ветви гигантов (и, конечно, из‑за невозможности увидеть в далеких скоплениях белые карлики).

 

Рис. 165. Фотография рассеянного (галактического) звездного скопления Плеяды

Сравнивая ее с диаграммой для окрестностей Солнца и, так сказать, приравнивая их друг к другу, можно определить разность m ‑ М, т. е. разность между видимой звездной величиной звезд каждого спектрального класса в скоплении и их абсолютной

звездной величиной, а по этой разности, как мы видели, легко подсчитать расстояние до скопления. Зная же расстояние и измерив видимый угловой диаметр скопления, легко определить линейный диаметр скопления в световых годах. Например, Плеяды отстоят от нас на 320 световых лет, и диаметр этой группы звезд ‑ около 30 световых лет.

Вокруг красного Альдебарана, самой яркой звезды в созвездии Тельца, легко заметить немногочисленную и более рассеянную, чем Плеяды, группу звезд скопления Гиад. Всего нам известно около 500 рассеянных скоплений, но мы не знаем еще множества более далеких и слабосветящихся или же скрытых от нас темными туманностями.

В. А. Амбарцумян выделил на небе группы звезд, которые он назвал ассоциациями. Звезды в ассоциации имеют одинаковые физические признаки и разбросаны гораздо сильнее, чем звезды рассеянных скоплений. Последние сами часто входят в состав ассоциаций. Амбарцумян назвал О‑ассоциациями группы горячих звезд, содержащих звезды класса О или ранние звезды класса В, и Т‑ассоциациями ‑ группы, содержащие переменные звезды типа Т Тельца. Ассоциации выделяют на небе по видимому скучи‑ванию таких немногочисленных звезд. Реальность такого видимого скучивания звезд классов О и В требует тщательной проверки. Дело в том, что в Млечном Пути много облаков темной материи. В прорывах между ними существуют просветы ‑ «коридоры видимости». В таком коридоре далекие горячие звезды видны среди более близких и получается лишь видимая большая плотность их на данной площади, в то время как в пространстве такого тесного скучивания их нет.

Но даже тогда, когда оно есть, взаимное тяготение между звездами ассоциации мало, так как они далеки друг от друга и звезды из этой области будут постепенно разбредаться. Установить такое их разбегаыие пока трудно и его существование является предметом споров. По мнению В. А. Амбарцумяна, в О‑ассоциациях рождаются и горячие звезды и более холодные ‑ это колыбели их, наряду со звездными скоплениями. Размеры ассоциаций являются промежуточными между размерами рассеянных звездных скоплений и больших звездных облаков.

Шаровые звездные скопления, известные в числе около сотни, имеют своего типичного представителя в лице звездного скопления в Геркулесе, видимого в бинокль как туманная звездочка примерно 6‑й звездной величины. Лишь сильный телескоп, а в особенности фотография, показывают, что тут существует целое скопление звезд в форме шара, сильно концентрирующихся к его центру. Тут сотни тысяч звезд, из которых мы видим только ярчайшие. Звезды более слабые по блеску, в частности такие, как Солнце, невидимы. Из‑за удаленности от нас и многочисленности звёзды, особенно вблизи центра, сливаются в одно сплошное светлое сияние.

Расстояния до шаровых звездных скоплений долго были загадкой, пока среди их населения не были обнаружены цефеиды. Представьте себе, что в крошечной области неба, занятой скоплением, вы открываете одну, вторую, третью, наконец, десяток цефеид, тогда как вокруг скопления на большом расстоянии вы их не находите ни одной. Может ли это быть случайным совпадением?

 

Рис. 166. Шаровое звездное скопление

Одна цефеида, более близкая к нам, чем скопление, или более далекая, может проектироваться на скопление ‑ это будет «случайность». Если из всех цефеид в этой области и вторая проектируется там же, это можно назвать «совпадением». Но если их проектируется туда десяток и больше, это уже не может быть, как говорят, «привычкой», ибо привычек у звезд нет. Это может означать лишь то, что цефеиды действительно находятся в самом шаровом скоплении, являются его членами. Наличие цефеид дало возможность определить расстояния до ряда шаровых скоплений, а затем и их размеры. До тех из них, в которых цефеид не оказалось, расстояния, по предположению Шепли (США), можно было определить по видимому блеску наиболее ярких звезд. Для наиболее далеких скоплений, представляющихся пятнышками, в которых отдельных звезд не видно, расстояния можно было определить по видиглым угловым размерам и по видимому суммарному блеску, так как истинные линейные размеры и суммарная светимость у всех шаровых скоплений оказались примерно одинаковыми.

Одно из ближайших к нам шаровых скоплений ‑ то, что находится в Геркулесе, отстоит от нас на 20 000 световых лет, его диаметр ‑ сотня световых лет. Наиболее далекие из шаровых скоплений отстоят от нас на 230 000 световых лет.

Диаграмма спектр ‑ светимость для звезд шаровых скоплений значительно отличается от такой диаграммы для рассеянных скоплений и для окрестностей Солнца. Там существуют и несколько иные типы звезд. Сравнение подобных диаграмм для разных звездных систем позволяет сделать важные заключения о жизненном пути звезд и их систем. Об этом мы узнаем из главы 11.

Немецкий астроном Бааде, работавший в США, впервые указал на существование двух типов звездного населения, имеющих различие и в их распределении в пространстве. Исследования советского астронома Б. В. Кукаркина и его сотрудников показали, что объекты с различными физическими характеристиками (например, переменные звезды различных типов, звездные скопления различного вида и т. п.) входят в состав более разнообразных составляющих нашей звездной системы: плоскую, сферическую и промежуточную. Имеются веские основания предполагать, что объекты, входящие в различные составляющие, имеют разное происхождение и возраст.

Так, например, шаровые скопления и короткопериодические цефеиды входят в состав сферической составляющей, заполняя пространство внутри шара с центром в центре нашей звездной системы. Другие небесные тела, например, горячие гиганты, пылевые и газовые туманности, входят в состав плоской составляющей, сосредоточиваясь преимущественно в тонком слое вдоль плоскости Галактики. Определение расстояний до шаровых скоплений говорит нам о том, что шаровые скопления концентрируются к центру Галактики, но простираются до границ нашей звездной системы, за которыми начинается лишенное звезд пространство. Таким образом, размер системы шаровых скоплений определяет внешние размеры Галактики ‑ того звездного дома с многочисленным населением, в котором мы живем.

Что же находится за пределами этого дома? Есть ли там еще другие звездные дома, другие звездные вселенные, другие галактики, сходны ли они с нашей или не похожи на нее? Об этом читайте в главе 10.

 

Туманный газ

 

Линии спектра показывают, что газовые туманности состоят из водорода, гелия, азота, кислорода, углерода и некоторых других химических элементов.

Но самыми яркими в спектре являются две зеленые линии, которые более полувека приписывались неизвестному газу, так как ни один химический элемент в лаборатории не обнаруживал этих линий ни при каких условиях. Как неизвестный газ на Солнце был назван «солнечным» или «гелием», так неизвестный газ туманностей был назван «туманным» или «небулием» (от латинского «небула» ‑ туманность).

 

Рис. 168. Спектры планетарных туманностей

Годы шли, но загадка небулия не разрешалась. Только успехи теории спектров и теории атомов позволили разоблачить незнакомца.

Подобно коронию на Солнце, «туманный газ» вырядился в незнакомую одежду из зеленых линий спектра и под ними скрыл себя. Уже давно было ясно, что небулий ‑ замаскировавшийся знакомец, так как для него не осталось места в периодической системе элементов Д. И. Менделеева.

Маску с небулия сорвал в 1927 г. Боуэн, вычисливший длины волн почти всех линий спектра, какие только могут когда бы то ни было давать химические элементы, уже обнаруженные в туманностях. Зеленые линии оказались «запрещенными» линиями дважды ионизованного кислорода. В туманностях дважды ионизованный кислород излучает как свои «разрешенные» линии, так и «неразрешенные», и последние у него даже ярче первых. В рассказе о разоблачении солнечного «корония» объяснялось, что такое запрещенные линии и отчего они почти не наблюдаются в лабораториях. Для их излучения газ должен быть крайне разрежен, а энергия, падающая на него от звезды, также должна быть крайне разрежена, т. е. газ должен находиться достаточно далеко от звезды, где освещение очень слабо. В лаборатории и до сих пор не удалось с уверенностью вызвать появление зеленых линий дважды ионизованного кислорода, потому что на Земле мы еще не можем предоставить ему для этого нужных условий. Лучшие наши воздушные насосы не в состоянии даже отдаленно создать такое разрежение газа, какое существует в газовых туманностях. А между тем этот газ, который с земной точки зрения гораздо разреженнее, чем то, что мы называем пустотой под колпаком воздушного насоса, ярко светится. Мы его видим на расстояниях в тысячи световых лет, а если говорить о газовых туманностях, обнаруженных в других галактиках, ‑ то и на расстояниях в миллионы световых лет. В лаборатории до сих пор не наблюдаются многочисленные другие линии спектра туманностей, менее яркие, чем зеленые, и также приписывавшиеся все тому же небулию. Они оказались запрещенными линиями того же кислорода, но однажды ионизованного или нейтрального, а также запрещенными линиями других известных химических элементов.

Газовые оболочки, выбрасываемые новыми звездами, дают спектр совершенно такой же, как газовые туманности, и иногда в спектрах новых звезд все самые яркие линии, а в некоторых случаях даже и вообще все видимые линии ‑ запрещенные.

В настоящее время все линии спектров газовых туманностей отождествлены. Их известно более сотни. По этим линиям мы узнаём качественный химический состав туманностей. В основном он характеризуется легкими элементами, но, как и в случае звездных атмосфер, в туманностях могут быть и некоторые другие химические элементы, хотя их линии в спектре и не наблюдаются. Причиной этого является либо слабость линий, либо их нахождение в области, недоступной для исследования в земных условиях: в ультрафиолетовой (которая поглощается в земной атмосфере) или в инфракрасной (где сильны линии поглощения водяными парами нашего воздуха).

Гораздо труднее определить количественный химический состав газовых туманностей, т. е. пропорцию разных химических элементов. При прочих равных физических условиях чем ярче, интенсивнее соответствующие линии спектра данных ионов, тем больше этих ионов, так как каждый квант света спектральной линии вызывается излучением одного иона. Но дело заключается в широких различиях физических условий, вызывающих излучение данной линии, и в том, что многие ионы не дают линий в наблюдаемой части спектра. Полное же число атомов данного элемента равно сумме всех нейтральных атомов и всех его ионов.

Можно считать, что в пределах точности расчетов нет существенного различия между количественным химическим составом туманностей и звезд. Было бы особенно интересно сравнить химический состав ядер туманностей и их оболочек, так как, несомненно, вещество оболочки (если учитывать факт ее расширения) отделилось когда‑то и как‑то от звезды. Это тем более интересно, что среди ядер со спектром типа Вольфа ‑ Райе одни содержат углерод без азота, другие же содержат и углерод и азот, а в одном случае азот даже сильно преобладает. К сожалению, такое сравнение химического состава нелегко, в частности потому, что линии спектра туманности накладываются на линии спектра ядра, и без того малочисленные, и отделить их друг от друга трудно. Известно, что в солнечных протуберанцах аномально высоко содержание ионизованного кальция по сравнению с его содержанием в хромосфере, из которой они выбрасываются. Протуберанцы бывают водородные и металлические. Такого рода различие возможно и в планетарных туманностях.

 



Поделиться:


Последнее изменение этой страницы: 2021-01-14; просмотров: 204; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.218.218.230 (0.013 с.)