Звездные дожди и потоки метеоров 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Звездные дожди и потоки метеоров



 

Мелкие частички, ‑ будем их называть камешками, хотя многие из них железные, ‑ производящие явление метеоров, или падающих звезд, часто несутся большими роями. Между тем более крупные тела

несутся в пространстве и падают на Землю одиночками и во всяком случае не в компании с метеорами. Они как бы не желают знаться с мелочью, и наблюдаемые иногда звездные дожди, целые потоки метеоров, вовсе не сопровождаются учащением падения метеоритов. Это наводит на мысль, что хотя состав метеоров и метеоритов одинаков, но происхождение их может быть различным.

Звездные дожди и ливни отмечались не раз, хотя и редко.

Первый из них, описанный научно, наблюдался в ноябре 1799 г. В ноябре же 1833 г. (12‑го числа) подобный дождь метеоров наблюдался ночью по всей Земле. Звезды падали как хлопья снега в зимнюю метель, и зачастую один зритель за секунду замечал до 20 метеоров. Сколько же их падало по всему небу, которое не мог видеть сразу один наблюдатель! Впрочем, такрш подсчеты делались не раз. Один наблюдатель, более или менее зоркий, может уследить за площадью неба диаметром около 60 градусов. Так как метеоры светятся на высоте порядка 80 км над Землей, то обозреваемая нашим наблюдателем на этой высоте площадь атмосферы составляет около 5000 км2. Но ведь поверхность всей атмосферы в 100 000 раз больше. В среднюю безлунную ночь, когда нет метеорного дождя, наблюдатель замечает за час на своем участке неба около десятка метеоров, следовательно, за сутки над всей Землей в атмосфере можно было бы насчитать 24 миллиона метеоров.

В ноябрьскую ночь 1833 г. вместо 10 насчитывалось около 70 000 метеоров за час. Значит, в эту ночь на Землю обрушились сотни миллиардов метеоров! А сколько же их пролетело мимо Земли?! Этого уж никто точно не знает, потому что крошечные камешки, несущиеся мимо Земли, совершенно невидимы, они не светятся. Можно только сказать, что число камешков, пронесшихся мимо, вероятно, во столько же раз больше числа попавших в земную атмосферу и прочертивших огненный след, во сколько раз число дождевых капель в сильном ливне больше того, которое упало на шляпу какого‑либо несчастного, попавшего под этот дождь.

Из особенно крупных звездных дождей последний произошел 9 октября 1933 г., когда ежеминутно появлялось до 350 метеоров, летевших из созвездия Дракона. Врочем, метеоры эти были неяркие и, начав появляться с вечера на ночном небе Европы, к полуночи они совсем прекратились, так что, когда ночь перекочевала в Америку, там этого прекрасного зрелища не было и в помине. Рой камешков, налетевших на Землю, пронесся мимо нее, очевидно, быстрее, чем Земля успела сделать четверть оборота вокруг своей оси.

 

Рис. 90. Нанесенные на карту звездного неба пути метеоров, принадлежащие к одному радианту. Место радианта отмечено буквой Р

В определенные дни ежегодно можно видеть усиленное падение метеоров, хотя его и нельзя назвать звездным дождем. Так, например, ежегодно 9‑14 августа метеоры в большом количестве вылетают из созвездия Персея, 19‑22 апреля ‑ из созвездия Лиры, 9‑12 декабря ‑ из созвездия Близнецов и т. д.

Центр того места, от которого во все стороны, как стрелы, летят метеоры, называется радиантом. Метеоры, радиант которых находится в созвездии Персея, называются Персеидами, те у которых радиант в Лире, ‑ Лиридами и т. д.

 

Рис. 91. Параллельные линии железнодорожных рельсов и контуров моста в перспективе сходятся, подобно путям метеоров, продолженным назад, и образуют центр перспективы, или радиант

Нетрудно понять, что схождение в одном месте ‑ в радианте ‑ метеорных путей, продолженных назад, есть явление кажущееся, перспективное. В самом деле, метеоры в конце своего пути приближаются к нам и потому кажутся расходящимися удаляющимися друг от друга. Начало их видимого пути находится выше в атмосфере, дальше от нас, и на большом расстоянии пути их кажутся сближенными. Вы видели не раз, как сближаются вдали и сливаются вследствие перспективы железнодорожные или трамвайные рельсы, в действительности параллельные друг другу. Пути метеоров в пространстве также параллельны друг другу. Параллельно летящие частицы, составляющие поток, врезаясь в воздух, начинают светиться и по мере приближения к наблюдателю кажутся все дальше уходящими от той точки (радианта), от которой они к нам движутся.

Ежедневно Земля встречает отдельные метеорные частички и «еженощно» бывают видны отдельные метеоры, которые ни к какому метеорному потоку нельзя отнести. Их называют спорадическими метеорами. По сравнению с метеорами потоков это как бы заблудившиеся экскурсанты или солдаты, отставшие от своих колонн.

Можно подсчитать расстояния между частичками метеорного роя, наблюдая число падающих звезд, появляющихся за час на определенной площади земной атмосферы, и зная скорость движения частиц. Оказывается, что метеоры летят в пространстве не очень тесным роем. Например, в потоке Персеид на каждую частичку приходится объем в 10 миллионов кубических километров! Частичка от частички отстоит в среднем на две с лишним сотни километров! Встретясь с ними за пределами Земли, например, пролетая в воображаемом корабле межпанетных сообщений, мы и ке подозревали бы, какой волшебный небесный фейерверк они могут произвести для наблюдателя на Земле.

 

Подробнее о метеорах

 

Метеоры и метеориты чрезвычайно занимательны с нескольких точек зрения и вполне стоят того, чтобы уделить им побольше внимания.

Во‑первых, метеориты ‑ это единственные небесные тела, которые попадают в наши руки. Лишь их состав и строение мы можегл изучать непосредственно, можем трогать, измерять, дробить, анализировать, изучать так же, как мы изучаем все земные предметы. Остальные небесные тела мы изучаем косвенными путями, наблюдая их видимые положения и движения, анализируя их свет. Результаты такого изучения для неспециалиста часто кажутся недостоверными к потому не вполне его удовлетворяют, хотя в действительности многие из этих данных гораздо достовернее, чем, скажем, наши представления о некоторых частях поверхности нашей собственной планеты, например об арктических областях или о дебрях Центральной Африки. Во всяком случае, не напрасно создалось выражение: «недосягаемы, как звезды на небе», а если и говорят, что кто‑то там «хватает звезды с неба», то приводят это как описание невероятного успеха. Между тем, если и не настоящие звезды, то хотя бы падающие звезды с неба (по крайней мере, метеориты) некоторым людям буквально удается «хватать».

Другое обстоятельство, благодаря которому метеоры и метеориты привлекают каше внимание, ‑ это то, что они тесно связаны с рядом других небесных образований: с кометами, астероидами, с зодиакальным светом и с солнечной короной, с так называемыми темными туманностями в межзвездном пространстве, а также с образованием рельефа поверхности некоторых небесных тел, включая отчасти и нашу Землю.

Эти камешки ‑ частично обломки каких‑то небесных тел, погибших при катастрофе, частично ‑ это те «кирпичи», из которых сложились разные небесные тела и, быть может, даже наша Земля.

Наконец, изучение метеоров и метеоритов мы можем рассматривать как средство для изучения высоких слоев земной атмосферы, которые так интересуют и ученых, и самолетостроителей, и радистов, и даже артиллеристов, но которые до недавнего времени были недоступны для непосредственного изучения. Последний вопрос мы рассмотрим позднее, а пока займемся метеорами как небесными телами, хотя и мельчайшими из тех, которым можно присвоить этот громкий титул.

Что же нас интересует при изучении метеоров, что подлежит определению из наблюдений?

Высота точек появления и исчезновения метеоров над земной поверхностью, скорость их движения и ее изменения, зависимость этих величин от яркости метеоров и их связь друг с другом, число метеоров в разные часы суток и в течение года, распределение их по яркости и по величине, их путь в пространстве до встречи с Землей...

Один из крупнейших советских «ловцов» падающих звезд И. С. Астапович зарегистрировал за 15 лет своей работы около 40 000 метеоров.

Наблюдать метеоры с пользой для науки может каждый, потому что большинство наблюдений метеоров производится невооруженным глазом и не требует никаких особых заний. Даже и инструменты для наблюдения метеоров в большинстве случаев могут быть так просты и скромны, что располагать ими может каждый любитель науки о небе.

Выдающуюся роль в науке о метеорах сыграли любители астрономии, такие, как Деннинг в Англии. В СССР целая организация любителей астрономии в составе Всесоюзного астрономо‑геодезического общества занимается наблюдением метеоров. Эта организация играет большую роль в развитии наших знаний о метеорах и располагает обширным архивом наблюдений. Такие организации есть и за рубежом. Метеоры стали теперь изучать и в обсерваториях, особенно интенсивно в Чехословакии, в США, у нас ‑ в Душанбе, Ашхабаде и Одессе, а радиометодами ‑ в Англии.

Уже говорилось о том, каким способом (методом засечки) определяется высота над Землей разных точек метеорного пути. Два наблюдателя, разделенных расстоянием в 30‑40 км, одновременно следят за одной и той же областью неба и зарисовывают на карту звездного неба пути метеоров. Сличая потом свои зарисовки и отождествляя общие для обоих наблюдателей метеоры по моменту наблюдения, их яркости, цвету и примерному расположению, они измеряют перспективный (параллактический) сдвиг пути метеора, как его видел один наблюдатель, по сравнению с тем, как этот путь видел другой.

Конец пути, более близкий к наблюдателю, смещается больше, чем начало пути. Зная высоту начала и конца пути метеора в атмосфере и проекцию пути на поверхность Земли, нетрудно установить его истинную длину. Оценивая продолжительность полета метеора в земной атмосфере и деля на нее длину пути, получают его среднюю скорость, поскольку действительная скорость движения метеора в атмосфере непостоянна: она меняется из‑за тормозящего действия сопротивления воздуха.

Скорость метеора в атмосфере интересует нас прежде всего потому, что знание ее решает вопрос о том, откуда приходят к нам метеоры ‑ из межпланетного или из межзвездного пространства.

Мы знаем, что скорость движения Земли по ее почти круговой орбите около Солнца составляет 30 км/сек. Теория тяготения говорит, что тело, движущееся на расстоянии Земли от Солнца со скоростью, не превышающей по отношению к Солнцу 30•√2 км/сек, т. е. не превышающей 42 км/сек, не может преодолеть тяготения к Солнцу. Оно движется тогда по эллипсу, периодически возвращаясь к Солнцу, и является, таким образом, членом Солнечной системы.

При скорости, хотя бы чуть большей чем 42 км/сек, всякое тело лишь искривит свой первоначальный путь под действием тяготения к Солнцу, но не замкнет его и, обогнув Солнце по гиперболе, навсегда уйдет из области его притяжения. В этом случае и приближается оно к Солнцу по гиперболе, т. е. в первый и в последний раз появляется в нашей Солнечной системе, придя, очевидно, из межзвездного пространства, где тяготение к нашему Солнцу слабее, чем тяготение к другим звездам.

Движение по параболе при скорости 42 км/сек является пограничным между движениями по эллипсу и по гиперболе и практически невозможно. Если такая скорость случайно и возникла бы, то немедленно притяжение планет хотя бы немного увеличило ее или уменьшило, превратив тотчас же параболическую орбиту, по которой тело вознамерилось двигаться, в орбиту эллиптическую или в гиперболическую.

Не подумайте, пожалуйста, что 42 км/сек ‑ это какое‑то абсолютно роковое число. По теории тяготения на всяком расстоянии от Солнца есть скорость V0, при которой движение тела должно быть круговым; это движение будет эллиптическим ‑ при скорости, большей чем V0, но меньшей чем скорость, равная V0√2, и гиперболическим ‑ при скорости, хотя бы ничтожно большей, чем V0√2. В случае же скорости, меньшей чем V0 на данном расстоянии от Солнца, тело упадет на него по кривой линии. Тело будет падать на Солнце по прямой, если его скорость равна нулю, т. е. если телу, неподвижному относительно Солнца, предоставлено падать на него столь же свободно, как зернышку на пашню.

Мы наблюдаем метеоры только вблизи самой Земли, и потому для наблюдаемых метеоров число 42 км сек действительно является как бы «роковым». К сожалению, простые зарисовки пути метеоров вследствие трудности запомнить точно путь метеора, в особенности его начало, из‑за внезапности его появления и из‑за скоротечности явления не дают желаемой точности и ведлгт к преувеличению оценки скорости движения.

Большую точность дает фотографирование метеора двумя фотокамерами, отстоящими друг от друга на несколько километров. При этом, однако, перед объективами камер надо поставить сектор, быстро вращаемый электромотором, так что в течение секунды объективы камер несколько раз закроются этим сектором, и экспозиция несколько раз прервется.

В результате след метеора на фотопластинке получается с перерывами, промежутки между которыми равны по времени, но не равны по длине. В этом случае ясно видно, что в начале своего пути метеор летел быстрее, а к концу медленнее. Этим выявляется тормозящее действие атмосферы. Высота определяется так же, как и при наблюдениях глазом, ‑ по смещению пути метеора на фоне звезд, зафиксированных на обеих фотографиях.

К несчастью, получить такие парные фотографии метеоров удается, конечно, еще реже, чем в случае обычного фотографирования.

Что касается яркости метеоров, то при наблюдениях глазом она оценивается по сравнению со звездами и говорят о метеорах первой звездной величины, второй величины и т. д.

Анализ наблюдений показывает, что чем ярче метеор, тем глубже в атмосферу он проникает, но высота точки его возгорания почти не зависит от его яркости. Подавляющее большинство метеоров начинает светиться на высоте 100‑120 км и гаснет на высоте 80‑85 км. Выяснилось, что на этой высоте в атмосфере существует особый слой, где плотность воздуха быстро повышается. Этот слой ‑ невидимая воздушная преграда ‑ разрушает остаток достигшего ее метеора. Большинство небесных гостей гибнет у этой «стены», натолкнувшись на нее.

Легко понять, что при данной скорости полета, определяющей силу сопротивления воздуха, а следовательно, и быстроту испарения метеора (а с ней и его яркость) метеор будет тем ярче, чем больше его масса. Только более массивные и медленные метеоры пробивают «броню» на высоте около 80 км и проникают ниже, разрушаясь нацело, на высоте 30‑40 км. Этой высоты достигают болиды, полет которых сопровождается звуком, зачастую напоминающим шипение. Наконец, метеориты, выпадающие на Землю, обычно перестают светиться на высоте около 22 км и падают с нее на Землю как темные, несветящиеся тела с обычной скоростью падающих тел. В этом месте запас их космической скорости обычно иссякает.

С другой стороны, чем больше скорость метеоров при их врезывании в атмосферу, тем больше высота, на которой начинается их свечение и разрушение. При больших скоростях сопротивление воздуха растет пропорционально квадрату скорости, а может быть, и быстрее. Поэтому метеор со скоростью 20 км/сек светится на высоте около 60 км, а со скоростью 70 км/сек ‑ на высоте около 100 км.

Для изучения земной атмосферы и свечения метеора интересна его скорость по отношению к Земле, о которой тут идет речь. Для изучения же происхождения метеоров нужно знать их скорость относительно Солнца. Скорость их относительно Земли складывается из их скорости относительно Солнца и из скорости движения Земли. Например, метеор, летящий прямо навстречу Земле со скоростью 40 км/сек, вонзится в нашу атмосферу со скоростью 70 км/сек, потому что Земля сама делает по 30 км/сек ему навстречу. Такой же метеор в погоне за Землей подлетит к ней со скоростью всего лишь 40‑30=10 км/сек, но притяжение Земли немного увеличит эту скорость.

 

Рис. 92. Метеоры налетают 'в лоб' на 'утреннюю' сторону Земли и догоняют ее 'вечернюю' сторону

Так как для любого момента величина и направление скорости движения Земли известны, то из наблюденной скорости метеора всегда можно вычесть скорость Земли и получить его скорость относительно Солнца. При таком расчете надо учитывать угол между скоростями и изменение пути и скорости движения метеора под влиянием притяжения Земли.

Фотографирование с вращающимся сектором перед объективом фотокамеры определенно говорит, что скорости метеоров явно эллиптические, т. е. что метеоры являются постоянными членами Солнечной системы. Три таких метеора оказались обращающимися вокруг Солнца (конечно, до их гибели в земной атмосфере) в среднем с периодом около 4 лет по орбите с большой полуосью в 2х/2 астрономические единицы, с эксцентриситетом того же порядка, что у периодических комет и у некоторых астероидов (0,7) и притом почти что в плоскости эклиптики.

Скорость в 42 км/сек на расстоянии Земли от Солнца ‑ это уже скорость чуждого нам тела, движущегося по параболе. Скорость же 41 км/сек (всего на 2‑3% отличающаяся от критической) уже соответствует периоду обращения лишь в 27 лет по орбите, всего в девять раз большей, чем орбита Земли.

Итак, в данном случае малейшая ошибка в определении скоростей метеоров (а их трудно определить!) ведет к совершенно новому заключению об их месте в Солнечной системе.

За последнее время скорости движения тысяч метеоров вне Земли были определены при помощи совершенно нового метода. Наблюдалось отражение радиоволн от тех следов, которые оставляют за собой метеоры. Много наблюдений метеоров радиометодами выполнено на английской станции Джодрелл Бэнк и на советской обсерватории в Душанбе. Из этих очень точных наблюдений выяснилось, что практически все метеоры движутся по эллиптическим орбитам и являются членами Солнечной системы, и, быть может, лишь единичные метеоры приходят к нам извне, как редкие гости. Так вопрос о природе метеоров решен окончательно.

Теория свечения метеоров приводит к следующим данным о массах метеоров. Масса очень яркого метеора нулевой звездной величины, если его скорость в атмосфере 55 км/сек, составляет 0,25 г. Это равно весу нескольких капель воды. Масса метеора пятой величины, едва приметного для глаза,‑ несколько тысячных грамма.

Так как, изучая метеоры, можно оценить их массы, то и их размеры не являются для нас тайной. Обычный яркий метеор до своего разрушения в атмосфере имеет размер кедрового орешка, а слабые метеоры, видимые только в телескоп,‑ размеры небольшой булавочной головки (данные о массах и размерах метеоров приблизительны). Как далеко не похожи такие тела на настоящие звезды, от которых несведущие люди отличают их только эпитетом «падающие»!

Быть может, возникает сомнение в том, как же такие крошки могут быть нами видимы на расстоянии порядка сотни километров? Но ведь видимая нами падающая звезда ‑ не эта твердая частичка! Это необычайно ярко светящийся раскаленный пар, в который она превращается в атмосфере, пар, создающий вокруг летящей частички газовую атмосферу довольно значительного размера. Стоит также вспомнить, что нить электролампочки благодаря ее яркости видна с огромного расстояния, хотя ее толщина ‑ сотые доли миллиметра; между тем газы, в которые обратился метеор, раскалены еще сильнее.

Поэтому не удивительно, что яркий метеор, видимый с расстояния сотни километров как звезда 2‑й величины, имеет действительную силу света в 3360 стандартных (международных) свечей.

Мельчайшие космические пылинки, оседающие на Землю, ‑ это жалкие остатки довольно значительных камешков, большая часть которых испарилась за время их полета.

 

Перепись метеоров

 

Если есть люди, почитающие за невозможное сосчитать звезды, видимые на небе простым глазом, то тем более безнадежной должна им казаться попытка сосчитать падающие звезды, да еще видимые на всей Земле, да еще в течение года. Между тем они подсчитаны, хотя, конечно, и не поштучно. Действительно, ведь когда мы хотим знать число деревьев строевого леса на участке, то для нас неважно пропустить в счете сотню‑другую деревьев, и мы бываем вполне удовлетворены, узнав, что таких деревьев, скажем, около 10 000, а не около 3000 или 170 000. Мало того, наше любопытство будет частично удовлетворено, когда мы узнаем только приблизительно какое‑либо число, если до этого не имели никакого о нем представления. Например, любопытно, хотя едва ли важно, знать, что в среднем у человека, еще не признанного лысым, на голове волос около 200 000, если до этого мы могли лишь гадать, сколько их, несколько тысяч или же миллионы. Наше представление об этом мало изменится, если при таком подсчете мы ошибемся на тысячу‑другую волос, или даже в несколько раз больше.

Именно так, подсчитывая число метеоров разной видимой яркости в разные часы одних и тех же суток и повторяя это по нескольку раз в год, можно оценить, сколько же их падает за год. Знание этого числа удовлетворит уже не простое любопытство, а даст нам гораздо больше, в частности, может ответить на вопрос, насколько же за счет метеоров увеличивается масса Земли и какую роль их вещество может играть в составе обрабатываемой нами почвы. Вдруг окажется, что картофель на вашем огороде растет в слое, образованном вековыми напластованиями разрушившихся метеоров!

При подсчете метеоров надо учесть процент метеоров, не замеченных наблюдателем, сопоставляя одновременные наблюдения нескольких лиц, долю площади атмосферы, обозреваемой им, и метеоры, видимые лишь в телескоп.

Результаты такого подсчета приведены в нижеследующей таблице, из которой, между прочим, видно, что с ослабеванием звездной величины метеоров на единицу их число возрастает в 2 1/2 раза. Однако ослабление на одну звездную величину означает уменьшение яркости в 2 1/2 раза, и в таком же отношении уменьшается его масса (так как при одинаковой скорости яркость метеора пропорциональна его массе). Благодаря такому случайному совпадению суммарная масса метеоров каждой звездной величины оказывается одна и та же, а именно ‑ 110 кг.

 

 

Как мы видим, «коэффициент полезного действия» метеоров, если их рассматривать как источник света, весьма велик. Если бы все метеоры, принадлежащие только к одной звездной величине и падающие за сутки, вздумали упасть одновременно в поле зрения, то они создали бы освещение, в несколько раз более сильное, чем освещение от полной Луны, а если бы все метеоры, падающие за сутки, мелькнули бы все сразу, то они осветили бы местность в 250 раз сильнее, чем Луна. И все это путем обращения в раскаленный пар лишь 5 тонн вещества на расстоянии сотни километров! Если бы они светили на расстоянии 1 км от нас, то освещение было бы еще в 10 000 раз ярче, ‑ правда, всего лишь на секунды.

Самые яркие из метеоров, вернее, болидов, имеют яркость, соответствующую ‑10‑й звездной величине. С другой стороны число слабых метеоров, не видимых даже в телескоп, нет нужды считать бесконечным.

С уменьшением яркости метеоров уменьшается их масса, и метеоры, которые были бы слабее 30‑й звездной величины, уже настолько малы, что подобные пылинки давным‑давно были бы выметены из Солнечной системы давлением света, которое для них превышает тяготение.

Таким образом, полная масса метеоров от ‑10 до +30 звездной величины, ежесуточно выпадающих на Землю, составляет около 4400 кг. Подсчет по таким же данным для метеоритов дает еще 5500 кг. Всего на Землю за сутки выпадает около 10 тонн метеоритного вещества.

Если с тех пор как земная кора затвердела, т. е. примерно за последние два миллиарда лет, метеоры и метеориты падали так же часто, как теперь, то на каждый квадратный километр поверхности выпало по 10 тысяч тонн метеоритного вещества, что составляет слой менее 10 см толщиной. Поэтому метеоритное вещество, хотя и примешивается к почве, но в ничтожной доле, и говорить, что наши огороды растут на метеоритной почве, нет никаких оснований.

 

Метеорные рои

 

До сих пор речь шла преимущественно о спорадических метеорах. Займемся же теперь подробнее метеорными потоками, т. е. метеорами, падающими в определенные дни года и вылетающими из определенного радианта. В табличке, помещенной ниже, приводится список потоков, наиболее богатых метеорами.

 

 

Уже из того, что метеоры, несущиеся из межпланетного пространства и вылетающие из определенного радианта, ежегодно наблюдаются в одни и те же дни, видно, что они движутся растянутым по какой‑то орбите потоком. В указанные даты Земля пересекает их путь, отчего и сталкивается с ними. Если метеоры более или менее растянуты по орбите, как трамваи, идущие гуськом, друг за другом на правильных интервалах, то всякий раз, пересекая их путь, Земля будет сталкиваться с ними и встречать их примерно в одинаковом числе. Такой случай имеет место у Персеид. Земля пересекает в течение нескольких суток ту как бы космическую «баранку», которую образует растянутый рой Персеид. 12 августа она, очевидно, пересекает середину этой «баранки», где метеоры больше всего сгущены: это день максимума потока.

Легко понять, что если метеоры движутся по эллиптической орбите, обращаясь около Солнца, и распределены вдоль этой орбиты неравномерно, и имеется где‑либо сгущение, то будет происходить следующее. Земля чаще будет пересекать бедные метеорами области «баранки», и их в эти годы (всегда в одни и те же дни) будет наблюдаться мало. Когда‑либо Земля встретится в том же месте своего годичного пути с главным скопищем метеоров, и тогда будет обильный дождь звезд. Это можно сравнить с тем случаем, когда правильные интервалы между трамваями на трамвайном кольце нарушились, и они все сгрудились, идя в хвосте друг за другом. Не скоро случится, что, выйдя к остановке, вы сразу встретитесь с этими скученными трамваями.

Если подобное сгущение метеоров имеет очень малую протяженность, то далеко не в каждый свой приход в точку, где орбита сгущения пересекается с Землей, оно будет ее здесь заставать, ‑ либо Земля, либо сгущение метеоров будут проходить точку пересечения орбит раньше другого, как бы играя в прятки. Вероятно, случаи такого рода бывают, но мы их пока не знаем. Действительно, периоды обращения большинства потоков должны измеряться десятилетиями, а одновременный приход в точку пересечения орбит будет происходить тогда раз в несколько столетий. Между тем научное изучение метеоров насчитывает всего лишь около сотни лет.

Определяя точно положение радианта и зная скорость метеоров, можно вычислить орбиту метеорного потока в пространстве. С течением времени эта орбита меняется благодаря возмущениям в движении метеоров, под действием притяжения планет, в особенности Юпитера.

Невозможно себе представить, чтобы метеоры, растянутые на орбите, могли бы с течением времени скучиваться. Наоборот, надо ожидать, что постепенно притяжения планет и Солнца, неодинаковые для более к ним близких и более далеких частей роя, как бы растянут этот рой по всем направлениям, но преимущественно вдоль его орбиты, так что постепенно сгущение метеоров растянется по всей орбите и образует подобие «баранки».

 

Рис. 93. Орбиты Леонид и Земли в пространстве

Ясно, что чем больше обращений около Солнца совершил метеорный поток, тем больше подвергался он «раздергивающим» воздействиям и тем шире и растянутее по орбите он должен быть. По степени концентрации метеоров на их орбите можно судить о возрасте этого метеорного потока, т. е. о времени, протекшем с момента его образования, хотя, конечно, при этом играет роль и период обращения и расположение его орбиты относительно планет.

Возможно, что спорадические метеоры ‑ это «отщепенцы» метеорных потоков, частички, вырванные некогда из большой компании подобных им тел.

Многие метеорные потоки имеют не только древнее происхождение, но и древние свидетельства их появлений. В этом отношении наиболее замечательны Леониды. Они обращаются по орбите с периодом 33 года, и целые ливни метеоров из этого радианта наблюдались, например, в 1799, 1833 и 1866 гг. С их главным скоплением Земля встречалась каждые 33 года.

В 1799 г. в Южной Америке видели и впервые научно описали звездный дождь, образованный Леонидами в ноябре. Индейцы рассказали, что такое же явление было в 1766 г. Пораженные этим явлением индейцы запомнили его хорошо, тогда как европейские ученые, очевидно, не обратили на него внимания.

 

Рис. 94. Леониды движутся по своей орбите плотным роем

На этом основании впервые заподозрили периодичность метеорных дождей, и действительно, в 1833 г. ноябрьский дождь падающих звезд повторился. Тогда ученые обратились к летописям разных народов и проследили по ним, хотя и с перерывами, метеорный дождь Леонид вплоть до 1768 г. до нашей эры! Эту первую запись 3700 лет назад сделали китайские летописцы. Следующее упоминание о нем нашлось в арабских источниках, относящихся к 902 г. Японские летописцы отметили необычайные падения звезд в ноябре 867, 1002, 1035‑1037 гг., по случаю чего напуганные японские императоры даже объявляли амнистию заключенным. Позднее летописи в разных странах все чаще и чаще, нередко с суеверным страхом, отмечают максимумы падения Леонид. Среди них для нас интересно древнерусское свидетельство, содержащееся в знаменитой Лаврентьев‑ской летописи. В записях 1202 г. говорится: «В 5 часов нощи потече небо все», «течение звездное бысть на небеси, отторгаху бо ся звезды на землю». В 1533 г. говорится, что в Москве «видети мнози людие: звезды по небеси протягахуся яко же вервии, летааху с востока на зимний запад». В другой летописи это явление описывается как чудесное «знамение небесное», как «видение» пономаря Тарасия с колокольни в Новгороде‑Великом: «множество ангел стреляющих огненными стрелами, яко дождь сильный из тучи».

 

Цветная фотография Большой туманности Ориона, полученная Миллером на 5‑метровом телескопе Паломарской обсерватории (США)

По признанию американского ученого Фишера целый ряд русских летописных сведений о метеорах в прошлые века является ценным для науки и отсутствует в западноевропейских хрониках. Так древнерусские наблюдения принесли огромную пользу для современной науки.

Дождь Леонид, предсказанный в ноябре 1866 г., наблюдался повсеместно, но в 1899 г. всеобщие ожидания оказались напрасными, метеоров в ноябре было очень мало. Оказалось, что между 18Ш6 и 1899 гг. метеорный сгусток проходил вблизи Юпитера и Сатурна. Притяжение этих планет как бы оттащило в сторону его орбиту, так что с Землей встретились лишь окраины роя. В 1932 г. надежды на новую встречу опять были напрасны, и за минуту, как и в 1899 г., появлялось лишь по одному метеору. Едва ли когда‑либо возмущения планет снова направят этот метеорный поток прямо на нашу Землю ‑ незначительную пылинку в том объеме, в котором для расположения метеорных орбит так много места.

Леониды налетают на Землю почти в лоб, сталкиваясь с ее «утренним» полушарием, а их скорость, складываясь с орбитальной скоростью Земли, приводит к тому, что их скорость в атмосфере составляет 72 км/сек. При такой большой скорости испарение их в воздухе идет очень быстро, и метеоры достигают большой яркости, оставляя следы в виде быстро затухающих туманных стрел.

Если, однако, из‑за возмущений от Юпитера и Сатурна мы почти что лишились поразительного зрелища, доставляемого Леонидами, то иногда благодаря тем же возмущениям случай дарит нас время от времени новыми неожиданностями. Из неведомого перед нами встают новые замечательные явления. Последним из них были Дракониды.

 

Цветная фотография планетарной туманности в Лире, полученная Миллером на 5‑метровом телескопе Паломарской обсерватории (США)

9 октября 1933 г., как только над Европой простерлась ночная тьма, небо усеяли слабые, но многочисленные метеоры. Число их росло, и к 8 часам вечера за минуту насчитывали до 350 падающих звезд, но уже через час от них не осталось и десятой доли. К полуночи метеоры иссякли, и когда ночь добралась до Америки, то все уже было кончено, и там лишь впоследствии узнали, чем случай одарил Европу в эту ночь. Радиант метеоров лежал в созвездии Дракона. Несмотря на неожиданность явления, многие успели сфотографировать метеоры, а на одной из пластинок за 10 минут на площадке неба размером 10X10° обнаружили 26 метеорных следов.

Дракониды, долго блуждавшие в пространстве, в этом году впервые обрушились на Землю, потому что Юпитер, упорно ворочавший их орбиту, наконец привел ее к пересечению с орбитой Земли.

В последующие годы Драконид было видно мало, ‑ признак их значительной концентрации в определенном месте орбиты. 9‑10 октября 1946 г. мы опять зацепили часть главного роя и опять увидели дождь падающих звезд.

Б 1933 г. находившиеся тогда под колониальным гнетом туземцы Судана в Африке, перепугавшись злого духа, «срывающего звезды с неба», подняли барабанный бой, чтобы испугать его, так же как некогда китайцы пытались отпугнуть дракона, якобы пожирающего Солнце во время затмения.

В астрономии же сохранился из драконов только один, да и тот является просто созвездием, а о смысле названия, данного во времена древних суеверий, мы теперь редко даже и вспоминаем.

Звездные дожди не раз пугали население. Так, например, в 1833 г. неграми на американских плантациях Леониды были приняты за предзнаменование дня «страшного суда», а сто лет спустя, в 1933 г., Дракониды навели страх в отсталой и реакционной тогда Португалии, и народ повалил в церкви.

Цветная фотография Большой туманности Ориона, полученная Миллером на 5‑метровом телескопе Паломарской обсерватории (США).

 

Прах комет

 

В то время как для несведущих людей метеорные дожди иногда кажутся грозным явлением, для ученых они явились, наоборот, основанием для рассеивания совершенно иных страхов, так сказать, «научного порядка», именно страхов столкновения Земли с кометой.

В этом отношении, а также для выяснения происхождения метеоров, для нас особенную ценность представила комета Биэлы и метеоры, носящие то же имя,‑ Биэлиды.

Австрийский офицер Белый, по происхождению чех, был любителем астрономии. Его фамилию переделали в армии на немецкий лад в Биэлу. И вот ему‑то, любителю астрономии, посчастливилось в 1826 г. открыть комету, которой присвоили его измененную фамилию. Уже впоследствии выяснилось, что эта комета с периодом обращения 6 1/2 лет наблюдалась в одно из своих прежних появлений вблизи Земли и Солнца еще в 1772 г.

Мы уже упоминали о том, что при своем появлении в 1846 г. эта комета распалась на две, которые, уже сильно ослабленные в яркости и разошедшиеся друг от друга на большое расстояние, вернулись к Солнцу в 1852 г. С тех пор они как в воду канули. При следующих появлениях ни одной из них увидеть не могли, хотя место на небе, где они должны были бы быть видны, с большой точностью было вычислено заранее.



Поделиться:


Последнее изменение этой страницы: 2021-01-14; просмотров: 121; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.129.211.87 (0.091 с.)