Часть 1. Мир твердого вещества 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Часть 1. Мир твердого вещества



 

С твердым веществом мы у себя на Земле знакомы больше всего, но в мировом пространстве оно встречается в гораздо меньшем количестве, чем газ. Однако твердое вещество сложнее по своей структуре, и жизнь требует под собой «твердой почвы».

Твердую кору имеют планеты (возможно, что не все и не всегда), твердыми являются маленькие ядра огромных газовых комет и мелкие небесные тела (вплоть до пылинок), носящиеся в мировом пространстве.

Перейдем же к знакомству с ними.

 

Глава 1. Главные члены солнечной семьи

 

 

Далекие земли ‑ спутники Солнца

 

Земля ‑ спутник Солнца в мировом пространстве, вечно кружащийся около этого источника тепла и света, делающего возможной жизнь на Земле. Вокруг Солнца кружатся и другие спутники ‑ планеты Солнечной системы; на каждую из них солнечного тепла и света приходится больше или меньше, в зависимости от ее расстояния от Солнца, а расположены они в следующем порядке: Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран, Нептун и Плутон. Мы к Солнцу в сорок раз ближе, чем Плутон, и в 2 1/2 раза дальше, чем Меркурий. Почти в каждой книжке по астрономии есть описание наглядной модели Солнечной системы, где Солнце и планеты изображаются разными фруктами всевозможных размеров, а орбиты, т. е. пути планет вокруг центрального светила, ‑ кругами разной величины. Нет нужды описывать всю такую модель снова. Главное ее назначение ‑ показать сравнительные размеры планет и Солнца и помочь представить себе огромность расстояний между планетами в сравнении с их размерами. Ограничимся напоминанием, что если 149 600 000 км, представляющих (округленно) расстояние Земли от Солнца, и составляющих астрономическую единицу расстояний, изобразить в нашей модели длиной одного метра, то Солнце будет изображаться вишней, Земля изобразится пылинкой, меньше десятой доли миллиметра, наибольшая из планет Юпитер ‑ булавочной головкой, а наименьшие из планет Меркурий и Марс ‑ пылинками, вдвое‑втрое меньшими по диаметру, чем пылинка‑модель Земли. Их даже не будет видно глазом. Кроме главных членов Солнечной системы, перечисленных выше, в солнечную семью входят спутники планет, в том числе Луна, сопровождающая земной шар и любезно его освещающая по ночам. Входит в нее и множество малых планет ‑ астероидов, мелких и крупных комет, о которых речь будет впереди. Но еще меньше, чем астероиды, метеориты. Это камни всевозможной величины, преимущественно мелкие, носящиеся в мировом пространстве. Ежегодно некоторые из них падают на Землю.

В этой главе мы расскажем немного о больших планетах, но зато дальше мы расскажем много о малых планетах.

Бег планет вокруг Солнца и спутников вокруг своих планет близок к равномерному движению по кругу, но немного отличается от него, как нашел еще три столетия назад Кеплер, уточнивший великое открытие гениалыфго польского ученого Коперника.

 

Законы Кеплера

 

Кеплер открыл три закона движения планет, которые это движение вполне определяют. Он указал в первом законе, что планеты обегают Солнце по эллипсам, у которых один из двух фокусов непременно совпадает с Солнцем (Как известно, эллипсом называется кривая, сумма расстояний до любой точки которой от двух заданных точек (их называют фокусами эллипса) одна и та же)). Во втором законе Кеплер говорит, что при движении планеты отрезок прямой, соединяющей планету с Солнцем, в единицу времени всегда описывает одну и ту же площадь. Третьим законом Кеплер установил, что квадраты времен обращения планет Р пропорциональны кубам их средних расстояний от Солнца а, т. е.

P21/P22=a31/a32

где значки 1 и 2 относятся к двум любым планетам.

 

Рис. 28. Порядок расстояний планет от Солнца и их сравнительные размеры. Размеры планет по сравнению с расстояниями и между ними увеличены в 10 000 раз. Маленькими кружками схематически показаны спутники планет

Все эти три закона ‑ следствие всемирного тяготения, как показал Ньютон. Они справедливы и для движения спутников вокруг своих планет и для движения любого тела под действием притяжения к другому. Только в некоторых случаях движение может происходить не по эллипсам, а по другим, уже незамкнутым кривым ‑ параболе или гиперболе (см. рис. 30). Они также имеют фокусы, и главное тело всегда будет в фокусе такой орбиты. Если тело движется не по замкнутой орбите, то тогда, конечно, о периоде обращения нельзя говорить и третий закон Кеплера для таких орбит не имеет смысла. В случае же движения по эллипсу, как показал Ньютон, третий закон правильнее писать так:

P21(M1+m1)/P22(M2+m2)=a31/a32

Его можно применить к любым двум массам M1 и М2, из которых первая имеет спутник с массой m1, обращающийся вокруг нее с периодом Р1 на среднем расстоянии a1, a вторая масса М2 имеет свой спутник массы m2 с периодом обращения Р2 на среднем расстоянии а2. По этой формуле можно сравнить, например, движение Луны около Земли с движением Земли около Солнца или с движением спутника Нептуна около своей планеты. Если массы спутников ничтожно малы в сравнении с массами своих центральных тел, то ими в формуле можно пренебречь. Тогда, применяя ее, например, к двум планетам ‑ спутникам Солнца, мы можем сократить массу Солнца в числителе и в знаменателе, и формула получит тот вид, в каком ее и дал сам Кеплер. Его формула ‑ приближенная, но она достаточно точна для планет Солнечной системы, так как масса их всех, вместе взятых, в 750 раз меньше массы Солнца. Уточнение же, приданное ей Ньютоном, необычайно важно тем, что позволяет определять массы небесных тел, введенные им в формулу третьего закона Кеплера.

Притяжение планет друг другом невелико по сравнению с их притяжением к Солнцу, но оно вызывает отклонения в движении, несколько меняет вид и положение орбит. Эти отклонения называются возмущениями. На много лет вперед величину возмущений можно вычислить, зная массы взаимодействующих тел и их орбиты в некоторый момент.

Движение планеты легко себе представить, если знать форму и положение ее орбиты в пространстве, а также положение планеты на орбите в какой‑нибудь момент. Величин; характеризующих эти данные, шесть, они называются элементами орбиты. Но для нас достаточно будет познакомиться только с четырьмя из этих элементов.

 

 

 

Элементы орбит

 

Размер орбиты характеризуется величиной большой полуоси эллипса а, выражаемой в астрономических единицах. На рис. 29 ‑ это отрезок ОА или ОН, от центра эллипса до его вершины. Вершина эллипса 17, ближайшая к Солнцу S, называется перигелием; здесь планета ближе всего к Солнцу и движется всего быстрее. Противоположная, самая далекая от Солнца точка называется афелием.

Чем больше вытянут эллипс, тем больше различие между расстояниями планеты от Солнца в перигелии и афелии, тем дальше фокус эллипса отстоит от его центра О. Эту вытянутость эллипса характеризуют эксцентриситетом е, представляющим отношение расстояния от фокуса до центра к длине большой полуоси.

 

Рис. 29. Эллиптическая орбита планеты и второй закон Кеплера. Солнце находится в точке S

Для окружности е=0, а когда е достигает единицы, то центр эллипса уходит в бесконечность. Иначе говоря, эллипс бесконечно растягивается, так что его ветви стремятся стать параллельными друг другу, и получается незамкнутая кривая, называемая параболой. Еще более разомкнутая кривая называется гиперболой; у нее е больше 1.

Кратчайшее расстояние от Солнца до орбиты, т. е. до ее перигелия, называется пери‑гелъным расстоянием.

 

Рис. 30. Типы орбит

Третий элемент i ‑ это угол, под которым плоскость орбиты светила наклонена к плоскости земной орбиты (к эклиптике); он называется наклонением. Для планет, которые все движутся около Солнца в одинаковом направлении, наклонения орбит очень невелики. Если наклонение больше 90° (например, для некоторых комет), то это означает, что направление обращения тела противоположно направлению обращения планет.

Четвертым элементом мы назовем какой‑нибудь из моментов, когда светило проходит через перигелий. Его обозначим через Т.

Эксцентриситеты орбит больших планет невелики, наибольшие у Плутона: 0,249, затем у Меркурия: 0,206. У Земли эксцентриситет орбиты всего 0,017, или 1/60, и если начертить орбиту Земли с большой полуосью в целый метр, то малая полуось будет всего на 1/7 мм меньше.

 

Космос в окрестностях нашей родной планеты

 

Граница, за которой начинается космическое пространство, разными людьми понимается очень различно. Некоторые считают, что космическое пространство начинается уже на высотах 150‑200 тсж, другие ‑ что граница находится за пределами земной атмосферы. Но где кончается атмосфера ‑ понятие такое же неопределенное: ведь она разрежается при удалении от Земли постепенно и незаметно переходит в межпланетную юреду. Пространство между планетами в житейском Смысле представляет полный вакуум, пустоту. Однако и в нем, кроме радиации (световых, тепловых и других лучей), имеются частицы газов, электроны и космическая пыль. Плотность всех этих частиц измеряется теперь на разных расстояниях от Земли и Солнца при помощи приборов, установленных на искусственных спутниках Земли и на межпланетных автоматических станциях. За несколько лет их запусков наши представления об окрестностях Земли существенно пополнились, В задачу нашей книги не входит описание земной атмосферы и методов ее исследования. Представление о ней нужно нам лишь для сравнения с другими планетами, и мы ограничимся немногими сведениями.

Обычные облака из водяных капелек или кристаллов льда сосредоточены в нижнем, конвективном слое воздуха, имеющем толщу от 8 до 15 км, в зависимости от условий. Так называемые ночные серебристые светящиеся облака, представляющие весьма благодарную задачу для научных любительских наблюдений, плавают в атмосфере на высоте около 80 км. Лучи полярных сияний, представляющих собой электрическое свечение воздуха вследствие его бомбардировки быстрыми корпускулами, приходящими извне, простираются иногда до высот в сотни километров. Плотность верхних слоев атмосферы меняется значительно в зависимости от активных процессов, происходящих на поверхности Солнца, а также ото дня к ночи. На высоте 1500 км она в среднем составляет около 5•10‑18 г/см3. Ощутимые еще следы атмосферы прослеживаются до высот более 3000 км.

Автоматические межпланетные станции и искусственные спутники Земли измеряли также плотность космической пыли на больших расстояниях от Земли. Ее свойства можно изучать также по тому, как она рассеивает свет Солнца, повышая яркость дневного неба. Пока размеры и концентрация космических пылинок мало изучены. Возможно, что Земля в целом и ее атмосфера тормозят движение космических пылинок и некоторые из них захватываются в плен. Часть этих пылинок, возможно, образовалась при взрывах, сопровождающих падение метеоритов на Луну.

Итак, в межпланетном пространстве носятся раз личные газовые частицы, молекулы и атомы. Кроме того, там носятся крупные камни‑метеориты, более мелкие метеорные тела вплоть до космических пылинок. Но и это еще не все. Там странствуют и электрически заряженные частицы ‑ протоны и электроны, также имеющие весьма разнообразные свойства. Под этими свойствами я подразумеваю различия в их кинетической энергии.

Самым замечательным открытием было, однако, открытие радиационных поясов Земли.

С помощью аппаратуры, установленной на искусственных спутниках и межпланетных станциях, было обнаружено существование вокруг Земли сильно сплющенного «облака» электрически заряженных частиц. Оно располагается вблизи плоскости магнитного экватора Земли. Внутри «облака» есть кольцевые зоны ‑ пояса с повышенной концентрацией частиц в единице объема. Эта электрическая земная «корона» простирается до восьми земных радиусов (до 50 000 км). Во внутреннем поясе наибольшая концентрация частиц достигается на высотах около 10 000 км. Эти частиць^в основном являются протонами. Внешний пояс шире и содержит электроны с энергией движения до 100 000 электронвольт.

 

Рис. 31. Магнитосфера Земли и радиационные пояса

Внутренний пояс образуется в результате разрушения атомов нашей атмосферы при ее бомбардировке космическими лучами. Космические лучи состоят из частиц, движущихся со скоростями, приближающимися к скорости света. Поэтому они обладают огромной разрушительной и проницающей силой. Приходят они к нам от Солнца и из далеких областей Космоса. Причина их возникновения окончательно еще не выяснена. Части распавшихся атомов атмосферы электрически заряжены и начинают двигаться в магнитном поле Земли вдоль его силовых линий. Магнитное поле Земли является ловушкой для таких частиц, и в ней они накапливаются.

Происхождение внешнего радиационного пояса, открытого советскими учеными при полете третьего спутника, пока еще не ясно. Какой‑то околоземный

ускоритель частиц разгоняет их и действует усиленно, когда Земля попадает в корпускулярный поток, по временам срывающийся с поверхности Солнца.

Радиационные пояса представляют (помимо громадного научного интереса) опасность для космонавтов. Изучение структуры и поведения радиационных поясов имеет практическое значение для развития космонавтики.

 

Изучение природы планет и Луны

 

Планеты ‑ далекие земли, братья (если хотите, сестры) родной нам планеты ‑ нашей Земли. Эти далекие земли ‑ все же ближайшие к нам небесные тела в бесконечной Вселенной. В телескоп мы видим даже их диски и, например, Юпитер при увеличении всего около 50 раз виден таким, какой Луна кажется невооруженному глазу. Тем не менее, много загадок, не решенных поныне, хранит каждая из планет и, увы, знаем мы о них меньше чем о многих неизмеримо более далеких звездах. Спектр планет, отражающих свет Солнца и не имеющих своего света, почти тот же, что спектр Солнца. Это «почти» и дало нам то существенно новое, что прибавилось к науке о природе планет за последние десятилетия. Еще больше нового принесли радионаблюдения планет и Луны и посылка к ним автоматических межпланетных станций.

Много времени прошло, прежде чем астрономы убедились в том, что поверхности многих планет они не видят, а видят в телескоп лишь вечно изменчивые облака, окутывающие и скрывающие от нас эти поверхности. Так обстоит дело с Венерой, Юпитером, Сатурном, Ураном и Нептуном. Наличие облаков говорит, правда, о существовании мощных атмосфер у этих планет, особенно у четырех последних, но ничего не прибавляет к нашему знанию о том, как выглядят их поверхности. Облака эти, как паранджи персиянок, скрывают от нас лицо многих планет.

В области изучения планет явилась возможность измерить их температуру с помощью термоэлементов и других приборов, а также из наблюдений их радио‑излучения. Эти температуры относятся к видимой поверхности планет, т. е. в одних случаях к самой поверхности, а в других ‑ лишь к определенным слоям их атмосферы. Данные о температуре планет в некоторых случаях в значительной степени заставили нас пересмотреть прежние взгляды на их физическую природу. Атмосфера играет большую роль в температурных условиях на планете. Плохо планете, у которой нет подобного атмосферного «плаща»!

На Земле днем облака и сам воздух предохраняют почву от чрезмерного нагревания, а ночью препятствуют отдаче накопленного тепла в мировое пространство. Температура дня и ночи при этом несколько выравнивается. Ясно также, что выравниванию температуры на поверхности способствует вращение планеты вокруг оси по отношению к Солнцу и тем сильнее, чем это вращение быстрее.

Спектральный анализ не может нам дать о планетах столько сведений, сколько он их дает о звездах, потому что планеты светят отраженным светом Солнца. Однако было бы неверно думать, что он вообще не может ничем нам помочь при изучении планет. Уже давно догадались, ^то, определяя из спектра по принципу Доплера скорость относительно нас двух противоположных краев планеты, можно узнать период вращения планеты вокруг своей оси. Так были окончательно установлены периоды вращения вокруг оси Урана и Нептуна.

Распределение энергии в непрерывном спектре планеты не является точной копией такового в спектре Солнца. Если планета, как часто, но неточно говорят, лишь отражает свет Солнца подобно зеркалу, то мы скажем, что это зеркало ‑ кривое. В самом деле, распределение энергии в спектре планеты не то, что в спектре Солнца, поскольку поверхность всякой планеты, как и всякого вещества, ‑ не идеальное зеркало, не идеально белая поверхность и поэтому не одинаково отражает лучи разной длины волны. Вообще говоря, поверхности красного цвета лучше всего отражают красные лучи; в спектре света, отраженного ими, красная часть спектра по сравнению с аетальными будет поэтому ярче, чем в спектре источника света, освещающего эти вещества. Именно эта большая яркость красных лучей в их спектре и придает им красный цвет.

Как давно известно, газы состоят из молекул, хаотически движущихся со всевозможными скоростями. Средняя их скорость зависит от массы молекул и от температуры газа. Средняя скорость тем больше, чем меньше масса молекул и чем больше температура. С другой стороны, при достижении газовой частицей некоторой предельной, или критической скорости планета уже не способна удержать ее возле себя и не дать ей унестись в безвоздушное межпланетное пространство. Зная силу тяжести на поверхности планеты (растущую с массой планеты и быстро убывающую с увеличением ее диаметра), можно вычислить эту критическую скорость. Для Земли она составляет 11,2 км/сек, для Луны ‑ 2,4 км/сек и т. д. Было подсчитано, с какой скоростью рассеивается атмосфера каждой планеты, и оказалось, что если бы у Луны и Меркурия когда‑то были плотные атмосферы, то они должны были очень быстро рассеяться. Это объясняет, почему у этих небесных тел мы не наблюдаем атмосферы в настоящее время. Молекулы их атмосфер давно покинули своих слабосильных хозяев ‑ Луну и Меркурий (С помощью приборов на космических аппаратах установлено, что на Меркурии и Луне есть следы слабой атмосферы, однако, такие «атмосферы» настолько разрежены, что не идут ни в какое сравнение с хорошо ощутимой атмосферой Земли)). У нашей прекрасной соседки Венеры существование атмосферы, почти такой же плотной, как у Земли, было впервые установлено из наблюдений гениальным русским ученым М. В. Ломоносовым в 1761 г. У Марса, по теории и в соответствии с наблюдениями, атмосфера должна быть разреженнее земной.

У больших планет атмосферы чрезвычайно обширны. Притяжение больших планет способно удержать (тем более, что на их поверхности температура низка) даже самые легкие газы (такие, как водород), имеющие наибольшую среднюю скорость молекул. Из атмосферы же Земли газы с наиболее легкими молекулами легко улетучиваются. Отдельные молекулы, покидающие атмосферы Юпитера и Сатурна, так малочисленны, что их убыль практически до сих пор не успела сказаться сколько‑нибудь заметно.

 

Рис. 32. Путь солнечных лучей, отражаемых планетой к Земле. Атмосферы планеты и Земли показаны точками

Спектр планет, имеющих атмосферу, отличается от спектра Солнца не только распределением энергии вдоль него. Атмосфера планеты как бы накладывает на спектр свой грим ‑ она вызывает в нем появление новых темных линий и полос. То же происходит и в атмосфере Земли. Действительно, проходя через атмосферу Земли, свет Солнца поглощается молекулами тех газов, которые в ней есть; это вызывает в спектре Солнца появление характерных для этих газов темных линий. В спектре Солнца, наблюдаемого нами сквозь земную атмосферу, есть линии, принадлежащие атмосферньшиводяньш парам, кислороду и азоту. Эти линии, называемые теллурическими, можно отличить от линий, принадлежащих самому Солнцу, потому что теллурические линии усиливаются по мере приближения Солнца к горизонту и увеличения толщи атмосферы, пронизываемой его лучами. Другой способ основан на том, что в спектре края Солнца, благодаря его вращению, линии смещены вследствие эффекта Доплера, теллурические же линии занимают нормальное положение.

Свет Солнца пронизывает атмосферу планеты и, отразившись от ее поверхности, пронизывает атмосферу ее еще раз, прежде чем попадет на Землю. Дополнительное поглощение солнечного света молекулами планетной атмосферы вызовет усиление теллурических линий по сравнению с непосредственно полученным спектром Солнца либо появление новых линий в спектре, если данного газа планетной атмосферы нет в атмосфере нашей Земли.

 



Поделиться:


Последнее изменение этой страницы: 2021-01-14; просмотров: 82; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.135.183.1 (0.028 с.)