Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Секрет старых отвалов (рений)

Поиск

 

 

Где собака зарыта? — Есть вакансии. — Химические «лжедмитрии». — Поиски неуловимых. — Позвольте усомниться! — «Апартамент» занят. — Последний из могикан. — Уникальная река. — На вершине пирамиды. — Копнем-ка недра! — Почем фунт рения? — Раз, два и обчелся. — Необычный октет. — Чудеса старика Хоттабыча — События на границах. — Волшебные нити. — Контакты нужно наладить. — С помощью ЭВМ. — Защитная «рубашка». — Увлечение катализом. — Шлагбаум на пути. — Знатные гости.

 

В конце 20-х годов нашего века крупная зарубежная фирма обратилась к директору одного из заводов цветных металлов в Сибири с выгодным, казалось бы, предложением: продать ей за довольно солидную сумму отвалы пустой породы, скопившиеся около заводской территории.

«Неспроста, должно быть, иностранцы заинтересовались отходами производства», — подумали работники завода. О том, что фирма действовала, как говорится, не корысти ради, а лишь обуреваемая желанием улучшить финансовое положение советского предприятия, разумеется, не могло быть и речи. Значит, нужно было найти, где собака зарыта. И заводские химики принялись тщательно исследовать старые отвалы. А уже вскоре все стало ясно: оказалось, что «пустая» порода содержала редчайший металл рений, открытый за несколько лет до описываемых событий. Поскольку мировое производство рения измерялось в то время буквально граммами, цена на него была поистине фантастической. И немудрено, что представители зарубежной фирма готовы были раскошелиться, лишь бы заполучить драгоценные отвалы. Но к их великому огорчению сделка по вполне понятным причинам не состоялась.

Что же представляет собой рений и чем был вызван повышенный интерес к нему?

Приоритет открытия этого металла принадлежит немецким ученым супругам Иде и Вальтеру Ноддак, однако у них было немало предшественников, стремившихся ускорить торжества по поводу нового элемента. Дело в том, что еще в 1871 году Д. И. Менделеев предсказал, что в природе «обязаны» существовать два химических аналога марганца, которые в периодической системе должны располагаться под ним, занимая пустовавшие в то время клетки № 43 и 75. Менделеев условно назвал эти элементы эка-марганцем и дви-марганцем.

Претендентов на появившиеся вакансии оказалось более чем достаточно. История химии хранит множество сообщений об открытиях новых элементов, которые после тщательной проверки приходилось «закрывать». Так было и с аналогами марганца. В роли первооткрывателей этих загадочных незнакомцев не прочь были выступить многие химики разных стран, но «открытым» ими элементам (ильмению, дэвию, люцию, ниппонию) суждено было лишь попасть в историю науки, но не заполнить вакансии периодической таблицы. Правда, один из них — дэвий, открытый в 1877 году русским ученым С. Керном и названный в честь знаменитого английского химика Г. Дэви, давал реакцию, которую в наше время используют в аналитической химии для определения рения. Может быть, Керну и в самом деле довелось держать в руках крупицы темно-серебристого металла, того, что спустя полвека официально появился на свет под названием рений? Но как бы то ни было в клетках № 43 и 75 продолжали торчать унылые вопросительные знаки.

Период неизвестности длился до тех пор, пока в поиски неуловимых элементов не включились немецкие химики Вальтер Ноддак и Ида Такке, которые вскоре, видимо, решили, что работа пойдет успешнее, если они скрепят свой научный союз еще и брачными узами.

Первым объектом их исследований, начатых в 1922 году, стала платиновая руда, однако экспериментировать с ней было довольно накладно, и ученым пришлось переключиться на материалы «попроще». К тому же теоретические работы, которые параллельно с экспериментами вели супруги, убеждали их в том, что, вероятнее всего, искомые элементы № 43 и 75 прячутся в природе в минералах типа колумбитов. Кроме того, теория позволила ученым рассчитать и приблизительное содержание в земной коре этих не поддающихся открытию элементов: оказалось, что на каждый их атом приходятся миллиарды атомов других представителей химического мира. Стоило ли при этом удивляться, что так долго пустовали «квартиры» № 43 и 75, а их будущие обитатели тем временем водили за нос не одно поколение химиков?

Эксперименты супругов Ноддак поражали своим размахом: в течение года они, пользуясь разработанным незадолго до этого рентгеноспектральным методом, «прощупали» 1600 земных минералов и 60 пришельцев из космоса — метеоритов. Титанический труд увенчался успехом: в 1925 году ученые объявили о том, что нашли в колумбите два новых элемента — мазурий (№ 43) и рений (№ 75).

Но объявить об открытии — еще не все. Нужно суметь доказать свою правоту тем, кто поставит под сомнение рождение новых элементов. Одним из таких ученых, усомнившихся в том, что пришла, наконец, пора на место знаков вопроса поставить в таблицу Д. И. Менделеева символы Ма и Re, был известный немецкий химик Вильгельм Прандтль. Крупный теоретик и блестящий экспериментатор, он вступил в ожесточенную дискуссию с супругами Ноддак. Те, в свою очередь, готовы были любой ценой защищать свой престиж. В конце концов «схватка», за ходом которой с интересом следил научный мир, закончилась вничью: убедительных доказательств в отношении мазурия супруги Ноддак представить не смогли, зато рений к этому моменту существовал уже не только на рентгеноспектрограммах: в 1926 году было выделено 2 миллиграмма нового металла, а спустя год -120 миллиграммов!

Да и работы других ученых — англичанина Ф. Лоринга, чехов И. Друце, Я. Гейровского и В. Долейжека (они независимо от супругов Ноддак, но лишь на несколько месяцев позже обнаружили элемент № 75 в марганцевых рудах) свидетельствовали о том, что нашелся истинный владелец соответствующего «апартамента» периодической таблицы.

Рений оказался практически «последним из могикан» — элементов, обнаруженных в природных материалах. В дальнейшем удалось заполнить еще несколько остававшихся пустыми клеток периодической системы элементов Д. И. Менделеева, но их обитатели были уже получены искусственным путем — с помощью ядерных реакций. Первым среди них суждено было стать бывшему мазурию- элементу № 43, который открывшие его в 1937 году итальянские ученые Э. Сегре и К. Перье назвали технецием (что по-гречески означает «искусственный»).

Но вернемся к рению. Своим именем металл обязан реке Рейн. Рейнская область — родина Иды Ноддак; здесь же и сам рений впервые увидел свет. (Заметим, что ни одной другой реке нашей планеты химики и физики не оказали столь высокой чести.) Промышленное производство нового металла развернулось в начале 30-х годов в Германии, где были найдены молибденовые руды с большим содержанием рения — 100 граммов на тонну. Всего одна щепотка на гору руды, но для рения и такую концентрацию можно считать необычайно высокой: ведь его среднее содержание в земной коре в десятки тысяч раз ниже. Немного найдется элементов, которые встречаются в природе еще реже, чем рений.

Распространенность химических элементов часто для наглядности изображают в виде пирамиды. Ее широкое основание составляют кислород, кремний, алюминий, железо, кальций, которыми богата Земля, а рений располагается в «поднебесье» на самом острие вершины.

Как полагал академик А. Е. Ферсман, для рения характерно «тяготение» к тем зонам земного шара, которые прилегают к его ядру. Возможно, со временем геологи сумеют проникнуть в самые недра нашей планеты и газеты всего мира опубликуют сенсационное сообщение об открытии там богатейшего рениевого месторождения…

В 1930 году мировое производство рения составляло всего… 3 грамма (зато каждый из этих граммов стоил ни мало, ни много-40 тысяч марок!). Но уже спустя 10 лет только в одной Германии было получено примерно 200 килограммов этого металла.

С тех пор интерес к рению растет как на дрожжах. Он оказался одним из самых тяжелых металлов — чуть ли не в три раза тяжелее железа. Только осмий, иридий и платина по плотности немного превосходят рений. Характерная его черта — необычайная тугоплавкость: по температуре плавления (3180 °C) он уступает лишь вольфраму. А температура его кипения настолько высока, что до сих пор ее не удалось определить с большой степенью точности. Можно лишь сказать, что она близка к 6000 °C (только вольфрам кипит примерно при такой же температуре). Еще одно важное свойство этого металла — высокое электросопротивление.

Не менее любопытны и химические свойства рения. Ни один другой элемент периодической системы не может похвастать тем, что, подобно рению, имеет восемь различных окислов. Кроме этого «октета» окислов, где валентность рения меняется от 8 до 1, он — единственный среди всех металлов — способен образовать ионы (так называемые «ренид-ионы»), в которых металл отрицательно одновалентен.

Рений весьма устойчив на воздухе: при комнатной температуре его поверхность остается блестящей десятки лет. В этом с ним могут конкурировать, пожалуй, лишь золото, платина и другие представители «благородного семейства».

Если оценить все металлы с точки зрения их коррозионной стойкости, то в этой «табели о рангах» рению по праву должно быть предоставлено одно из самых почетных мест. Ведь самые «злые» кислоты-плавиковая, соляная, серная — не в силах с ним справиться, хотя перед азотной кислотой он пасует.

Как видите, свойства рения достаточно разнообразны. Многогранна и его деятельность в современной технике. Пожалуй, наиболее важную роль рений играет в создании различных кислотоупорных и жаропрочных сплавов. Техника XX века предъявляет к конструкционным материалам все более и более жесткие требования. Возможно, старику Хоттабычу для получения сплава с любыми заданными свойствами понадобилось бы лишь вырвать два-три волоска из своей бороды. Ученым же, не обладающим даром волшебства, приходится тратить на это долгие годы, да и «расход» волос при этом порой бывает значительно выше.

Можно с полным основанием сказать, что с тех пор, как создатели сплавов взяли на вооружение рений, им удалось добиться немалых успехов. Во всяком случае жаропрочные сплавы этого металла с вольфрамом и танталом уже успели завоевать признание конструкторов. Еще бы: мало какому материалу по плечу сохранять при «адских» температурах- до 3000 °C! — ценные механические свойства, а для рениевых сплавов — это не проблема.

Особый интерес металловедов вызывает «рениевый эффект»-благотворное влияние рения на свойства вольфрама и молибдена. Дело в том, что эти тугоплавкие металлы, которые не только не боятся высоких температур, но и стойко переносят при этом значительные нагрузки, в обычных условиях (не говоря даже о легком морозе) ведут себя весьма капризно: они хрупки и от удара могут разлететься на кусочки, как стекло. Но оказалось, что в сочетании с рением вольфрам и молибден образуют прочные сплавы, сохраняющие пластичность даже при низких температурах.

Природа «рениевого эффекта» еще недостаточно изучена. Как полагают ученые, суть его в следующем. В процессе производства в вольфрам и молибден иногда проникает «инфекция»-углерод. Поскольку в твердом состоянии эти металлы совершенно не растворяют углерод, ему ничего не остается, как расположиться в виде тончайших карбидных пленок по границам кристаллов. Именно эти пленки и делают металл хрупким. У рения же с углеродом иные «взаимоотношения»: если его добавить к вольфраму или молибдену, то ему удается удалить углерод с пограничных участков и перевести в твердый раствор, где тот практически безвреден. Теперь уже для хрупкости у металла нет оснований и он становится вполне пластичным. Вот почему из сплавов вольфрама и молибдена с рением можно изготовить фольгу или проволоку в несколько раз тоньше человеческого волоса.

Для сверхточных навигационных приборов, которыми пользуются космонавты, летчики, моряки, необходимы так называемые торсионы-тончайшие (диаметром всего несколько десятков микрон!), но удивительно прочные металлические нити. Лучшим материалом для них считается молибденорениевый сплав (50 % рения). Оценить его прочность можно по такому факту: проволочка из него сечением в 1 квадратный миллиметр способна выдержать нагрузку в несколько сот килограммов!

Сегодня трудно найти на земле уголок, куда бы не проникло еще электричество. В промышленности и сельском хозяйстве, на транспорте и в быту постоянно трудится несчетное число электроприборов. Множество приборов — это множество выключателей, множество контактов. При работе выключателя в нем иногда проскакивает крохотная искорка, которую не следует считать безобидной: медленно, но верно она разрушает электрический контакт, а это приводит к непредусмотренной потере электроэнергии.

Какой бы мизерной ни была это потеря, но помноженная на миллиарды контактов, она становится огромной. Особенно важно обеспечить стойкость контактов в тех случаях, когда они работают в условиях повышенной температуры или влажности, где вероятность их разрушения возрастает. Вот почему ученые постоянно ищут все более стойкие — прочные и тугоплавкие — материалы для изготовления контактов. Долгое время для этой цели не без успеха применяли вольфрам. Когда же стали известны характеристики рения, выяснилось, что рениевые контакты лучше вольфрамовых. Так, например, вольфрамовые контакты выдерживали совместное «наступление» тропической коррозии и вибрации лишь несколько суток, а затем полностью выходили из строя; рениевые же контакты успешно работают в таких условиях месяцы и даже годы.

Но где же напастись столько рения, чтобы удовлетворить им электротехническую промышленность? Опыты показали, что вовсе не обязательно делать контакт из чистого рения. Достаточно добавить к вольфраму немного этого металла, и эффект будет почти тот же. Зато расходы рения сократятся во много раз: одного килограмма его хватает на десятки тысяч контактов.

Один из вольфраморениевых сплавов, выпускаемый нашей промышленностью, уже нашел применение более чем в 50 электровакуумных приборах. Использование этого материала в катодном узле электроннолучевой трубки повысило его долговечность до 16 тысяч часов. Это значит, что если экран телевизора светится в наших домах в среднем по четыре часа в день, то его катодный узел сможет безупречно работать не менее 12 лет.

Замечательные свойства продемонстрировали и другие сплавы рения — с ниобием, никелем, хромом, палладием. Даже небольшие добавки рения повышают, например, температуру плавления хромоникелевого сплава примерно на 200–250 градусов.

Широким диапазоном свойств рениевых сплавов объясняется и многообразие сфер их применения: от высокочувствительных термопар, не боящихся жарких объятий расплавленной стали, до кончиков вечных перьев, опор компасных стрелок и других деталей, которые должны долгое время сохранять большую твердость, прочность, износостойкость.

Число сплавов рения с другими металлами постоянно растет, причем сегодня в подборе «партнеров» для него значительную помощь металловедам оказывает электронная вычислительная техника. С помощью ЭВМ уже предсказаны свойства многих двойных сплавов рения.

Для борьбы с коррозией — вечным врагом металла — ученые разработали немало способов. Хромирование, никелирование, цинкование взяты на вооружение много лет назад, а вот ренирование — процесс сравнительно новый. Тончайшие рениевые покрытия по стойкости не знают себе равных. Они надежно защищают детали от действия кислот, щелочей, морской воды, сернистых соединений и многих других опасных для металла веществ. Цистерны и баки, изготовленные из ренированных стальных листов, применяют, например, для перевозки соляной кислоты.

Ренирование позволяет в несколько раз продлить срок службы вольфрамовых нитей в электролампах, электронных трубках, электровакуумных приборах. После откачки воздуха в баллоне электролампы неизбежно остаются следы кислорода и водяных паров; они же всегда присутствуют и в газонаполненных лампах. На вольфрам эти непрошеные гости действуют разрушающе, но если покрыть нити рениевой «рубашкой», то водород и пары воды уже не в силах причинить вольфраму вред. При этом расход рения совсем невелик: из одного грамма можно получить сотни метров ренированной вольфрамовой нити.

Новая, но очень важная область применения рения — катализ. Металлический рений, а также многие его сплавы и соединения (окислы, сульфиды, перренаты) оказались отличными катализаторами различных процессов — окисления аммиака и метана, превращения этилена в этан, получения альдегидов и кетонов из спиртов, крекинга нефти. Самый многообещающий катализатор — порошкообразный рений, способный поглощать большие количества водорода и других газов. По мнению специалистов, в ближайшие годы на катализационные «нужды» будет расходоваться половина рения, добываемого во всем мире.

Как вы убедились, «безработица» рению не грозит. Однако шлагбаумами на пути широкого использования его в технике оказались редкость и рассеянность этого элемента в природе. В земной коре золота, например, содержится в пять раз больше, чем рения, серебра-в сто раз, вольфрама-в тысячу, марганца — почти в миллион, а железа — в 50 миллионов раз больше. О чрезвычайной рассеянности рения говорит тот факт, что этот элемент не имеет собственных месторождений. Практически единственный минерал, который можно назвать рениевым джезказганит (он найден вблизи казахского города Джезказган). Обычно же рений встречается в качестве примеси, например, в молибдените (до 1,88 %), колумбите, колчедане и других минералах. Рения в них очень мало — всего от миллиграммов до нескольких граммов на тонну. Стоит ли удивляться, что супругам Ноддак. чтобы получить первый грамм сравнительно чистого металлического рения, пришлось переработать более 600 килограммов норвежского молибденита. По подсчетам специалистов, рениевые запасы всех месторождений капиталистических стран оцениваются всего в тысячу тонн.

Еще один крупный «недостаток» рения — его высокая стоимость: он значительно дороже золота. Тем не менее спрос на этот металл все время растет, особенно в последние годы, когда им заинтересовались творцы ракетной техники.

До недавнего времени рений в нашей стране получали только из медного и молибденового сырья. В конце 70-х годов ученые Института металлургии и обогащения АН Казахской ССР создали технологию извлечения этого ценнейшего металла из полупродуктов свинцового производства. В основе новой технологии лежат ионообменные процессы, позволяющие получать очень чистый металл, обладающий высокими физико-химическими свойствами.

…В 1960 году в Институт металлургии имени А. А. Байкова Академии наук СССР приехали иностранные гости. Казалось бы, для работников института, имеющего мировое значение, в этом факте не было ничего примечательного — здесь привыкли к визитам зарубежных коллег любого ранга. Однако гости, о которых идет речь, — убеленная сединами супружеская пара — вызывали особое уважение: это были приехавшие в Москву супруги Ноддак. Долго ходили они по комнатам лаборатории редких и тугоплавких металлов и сплавов. Их интерес был понятен: ученые лаборатории под руководством члена-корреспондента Академии наук СССР Е. М. Савицкого уже несколько лет занимались исследованием рения и сумели получить весьма важные результаты.

Замечательному металлу предстояло в стенах института раскрыть новые грани своего дарования, обрести новые профессии, и, конечно же, супругов Ноддак не могла не волновать дальнейшая судьба их детища.

 

«ОБИДА» БЛАГОРОДНОГО МЕТАЛЛА (ОСМИЙ)

 

 

Трифилий или Варахасий? — Горькая обида. — Поиск ведут знатоки. — Хлор редьки не слаще. — Благородное происхождение. — Три богатыря. — Все становится на свое место. — Сомнительная слава. — Что почем? — Твердость в почете. Секрет вечности. — Неразлучный дуэт. — Ответственный пост. — Игра стоит свеч. — Большой спрос. — Семь «братьев». — «Товары неширокого потребления». Осторожно: яд! — В стакане воды. — Сколько можно заблуждаться? — Проблемы трудоустройства. — Осмий в «ловушке».

 

Помните у Гоголя: «Родился Акакий Акакиевич против ночи, если только не изменяет память, на 23 марта… Родильнице предоставили на выбор любое из трех имен, какое она хочет выбрать: Моккия, Сессия или назвать ребенка во имя мученика Хоздазата. „Нет, — подумала покойница, — имена-то все такие“. Чтобы угодить ей, развернули календарь в другом месте; вышли опять три имени: Трифилий, Дула и Варахасий. „Вот это наказание, — проговорила старуха, — какие все имена, я право никогда и не слыхивала таких. Пусть бы еще Варадат или Варух, а то Трифилий и Варахасий“. Еще переворотили страницу — вышли: Павсикакий и Вахтисий. „Ну, уж я вижу, — сказала старуха, — что, видно, его такая судьба. Уж если так, пусть лучше будет он называться, как и отец его. Отец был Акакий, так пусть и сын будет Акакий“. Таким образом и произошел Акакий Акакиевич».

Не знаем, долго ли английский химик Смитсон Теннант придумывал имя одному из двух открытых им в 1804 году химических элементов — осмию, но повезло этому «новорожденному» не больше, чем герою гоголевской «Шинели». Дело в том, что «осмий» в переводе с греческого означает… «запах».

Согласитесь: для благородного металла (а осмий как представитель платиновой группы металлов с полным правом носит этот титул) такое название, мягко выражаясь, не может служить украшением. А если учесть, что ближайшие родственники гордо именуются палладием (тезка богини Афины Паллады), иридием (по-гречески «радуга»), родием («Роза»), рутением (от латинского названия России), то обида становится еще горше.

Почему же Теннант был так немилостив к своему «крестнику»? Прежде чем ответить на этот вопрос, поведаем о событиях, которые предшествовали открытию осмия.

В 1804 году известный английский ученый Уильям Волластон, изрядно поинтриговав перед этим научный мир (подробнее об этом рассказано в очерке о палладии «Шутка английского химика»), сообщил на заседании Королевского общества, что, анализируя сырую (природную) платину, он обнаружил в ней неизвестные ранее металлы, названные им палладием и родием. Оба были найдены в той части платины, которая растворялась в царской водке, но при этом взаимодействии оставался еще и нерастворимый остаток. Он, как магнит, притягивал к себе многих химиков, справедливо полагавших, что и в нем может прятаться какой-нибудь неведомый дотоле элемент.

Близки к успеху были французы Колле-Дескотиль, Фуркруа и Воклен. Они не раз замечали, что при растворении сырой платины в царской водке выделялся черный дым, а при сплавлении нерастворимого остатка с едким кали образовывались соединения, которые «не возражали» против растворения. Фуркруа и Воклен предположили, что искомый элемент частично улетучивается в виде дыма, а та часть его, которой не удается таким способом «эвакуироваться», оказывает агрессору посильное сопротивление, не желая в нем даже растворяться. Ученые поторопились дать новому элементу имя — «птен», что по-гречески означает «крылатый, летучий».

Но это название порхнуло, как бабочка, и кануло в Лету, так как вскоре Теннант сумел разделить «птен»: на самом деле он представлял собой естественный сплав двух разных металлов. Один из них ученый назвал иридием за разнообразие окраски солей, а другой — осмием, поскольку его четырехокись, выделявшаяся при растворении в кислоте или воде продукта сплавления осмиридия (так в дальнейшем стали называть бывший «птен») со щелочью, имела неприятный, раздражающий запах, похожий одновременно на запахи хлора и подгнившей редьки. Позже выяснилось, что и сам металл способен издавать подобный «аромат», правда, послабее: тонкоизмельченный осмий постепенно окисляется на воздухе, превращаясь в четырехокись. Видимо, не по душе пришелся этот запах Теннанту, и он в сердцах решил увековечить в названии открытого им элемента свое наиболее сильное впечатление от первого свидания с ним.

По одежке встречают, по уму провожают. И если запах да цвет оловянно-белый с серовато-голубым отливом — можно считать «одеждой» осмия, то его характеристики как химического элемента и как металла по этой пословице следует отнести к «уму».

Так чем же может похвастать наш герой? Прежде всего, как уже было сказано, своим благородным происхождением. Взгляните на периодическую систему элементов: в правой части ее особняком держится семейство платиноидов, состоящее из двух триад. В верхнюю триаду входят легкие платиновые металлы рутений, родий, палладий (все в мире относительно: любой представитель этой троицы в полтора с лишним раза тяжелее железа). Во второй триаде собрались настоящие богатыри-тяжеловесы — осмий, иридий и платина. Интересно, что долгое время ученые придерживались такого порядка возрастания атомных весов этих элементов: платина — иридий — осмий. Но когда Д. И. Менделеев создавал свою периодическую систему, ему приходилось тщательно проверять, уточнять, а порой и исправлять атомные веса многих элементов. Одному проделать всю эту работу было нелегко, поэтому Менделеев привлекал к работе других химиков. Так, когда ему отрекомендовали Ю. В. Лермонтову, которая была не только родственницей великого поэта, но и высококвалифицированным химиком, ученый попросил ее уточнить атомные веса платины, иридия и осмия, поскольку они вызывали у него большое сомнение. По его мнению, наименьший атомный вес должен был быть у осмия, а наибольший — у платины. Серия точных экспериментов, проведенных Лермонтовой, подтвердила правоту создателя периодического закона. Тем самым было определено нынешнее расположение элементов в этой триаде — все стало на свое место.

Осмий имеет рекордную плотность среди всех обитателей периодической системы — 22,5 г/см3. Чтобы уравновесить гирьку из этого металла, понадобилось бы более 40 таких же по объему гирек из его антипода-лития. Если обычную бутылку заполнить порошком осмия, то она будет тяжелее ведра с водой.

Но каким бы уникальным ни казалось это качество осмия, пока оно практически не используется в технике. В отличие от тугоплавкости, твердости, прочности и других действительно ценных свойств металлов, большая плотность не приносит лавров ее обладателю. Аналогию можно найти и в жизни: люди всегда ценили силу, быстроту, ловкость, а гигантский вес или рост человека лишь вызывают удивление и сомнительный интерес.

Впрочем, у осмия есть и такие деловые качества, которые не могут не внушить уважения к нему. Не случайно, он самый дорогой из всех благородных металлов, хоть и наименее «благородный» из них (вы уже знаете, что мелкораздробленный осмий не в силах противостоять кислороду воздуха даже при комнатной температуре, в то время как его «родственники» славятся прежде всего своей необыкновенной химической стойкостью). Тем не менее, если в 1966 году платина ценилась на мировом рынке в 4,3 раза дороже золота, а иридий в 5,3 раза, то аналогичный коэффициент для осмия был равен 7,5. Во многом виновата в этом природа, которая не только не накопила запасы осмия, но и ухитрилась так запрятать имеющиеся у нее крохи этого элемента (5 * 10-6 % массы земной коры), что добыча их влетает в копеечку. Если мировое производство большинства металлов исчисляется тысячами и даже миллионами тонн, то для осмия счет идет на килограммы.

Одно из главных достоинств осмия — его очень высокая твердость; в этом с ним могут конкурировать немногие металлы. Вот почему при создании сплавов с наивысшей износостойкостью в их состав вводят осмий. Авторучки с золотым пером — не редкость. Но ведь золото — довольно мягкий металл, а перу за долгие годы работы приходится по воле хозяина пройти по бумаге долгие километры пути. Конечно, бумага — не напильник и не наждак, однако выдержать такое испытание могут лишь немногие металлы. И все же кончики перьев справляются с этой трудной ролью. Как? Секрет прост: их обычно изготовляют из сплавов осмия с другими платиноидами, чаще всего из уже известного вам осмиридия. Без преувеличения можно сказать, что перу, «бронированному» осмием, сносу нет.

Исключительная твердость, хорошая коррозионная стойкость, высокое сопротивление износу, отсутствие магнитных свойств делают осмиридий прекрасным материалом для острия компасной стрелки, осей и опор точнейших измерительных приборов и часовых механизмов. Из него изготовляют режущие кромки хирургических инструментов, резцов для художественной обработки слоновой кости.

То, что осмий и иридий часто «выступают дуэтом» — в виде природного сплава, объясняется не только ценными свойствами осмиридия. но и волею судьбы, пожелавшей, чтобы в земной коре эти элементы были связаны необыкновенно прочными узами. В виде самородков ни тот, ни другой металл в природе не обнаружены, зато осмистый иридий и иридистый осмий — хорошо известные минералы (называются они соответственно невьянскит и сысертскит): в первом преобладает иридий, во втором — осмий.

Иногда эти минералы встречаются самостоятельно, но чаще входят в состав самородной платины. Разделение ее на компоненты (так называемый аффинаж) процесс, включающий множество стадий, на одной из которых осмиридий выпадает в осадок. И вот едва ли не самое сложное и дорогостоящее во всей этой «истории» — разлучить осмий и иридий. Но зачастую в этом и нет необходимости: как вы уже знаете, сплав широко применяют в технике, а стоит он значительно дешевле, чем, например, чистый осмий. Ведь для того, чтобы выделить этот металл из сплава, нужно провести столько химических операций, что одно их перечисление заняло бы много места. Конечный продукт длинной технологической цепи — металлический осмий чистотой 99,9 %.

Наряду с твердостью, известно еще одно достоинство осмия — тугоплавкость. По температуре плавления (около 3000 °C) он превзошел не только своих благородных собратьев — платиноидов, но и подавляющее большинство остальных металлов. Благодаря своей тугоплавкости осмий попал в биографию электрической лампочки: еще в те времена, когда электричество доказывало свое преимущество перед другим источником света — газом, немецкий ученый К. Ауэр фон Вельсбах предложил заменить в лампе накаливания угольный волосок осмиевым. Лампы стали потреблять в три раза меньше энергии и давали приятный, ровный свет. Но на этом ответственном посту осмий долго не продержался: сначала его сменил менее дефицитный тантал, однако вскоре и тот вынужден был уступить место самому тугоплавкому из тугоплавких — вольфраму, который по сей день несет свою огненную вахту.

Нечто подобное произошло с осмием и в другой сфере его применения-в производстве аммиака. Современный способ синтеза этого соединения, предложенный еще в 1908 году известным немецким химиком Фрицем Габером. немыслим без участия катализаторов. Первые катализаторы, которые использовались для этой цели, проявляли свои способности лишь при высоких температурах (выше 700 °C), да к тому же они были не очень эффективны. Попытки найти им замену долго ни к чему не приводили. Новое слово в совершенствовании этого процесса сказали ученые лаборатории Высшей технической школы в Карлсруэ: они предложили применять в качестве катализатора тонкораспыленный осмий. (Кстати, будучи весьма твердым, осмий в то же время очень хрупок, поэтому губку этого металла можно без больших усилий раздробить и превратить в порошок.) Промышленные опыты показали, что игра стоит свеч: температуру процесса удалось снизить более чем на 100 градусов, да и выход готовой продукции заметно возрос.

Несмотря на то что в дальнейшем осмию пришлось и здесь сойти со сцены (сейчас, например, для синтеза аммиака используют недорогие, но эффективные железные катализаторы), можно считать, что именно он сдвинул важную проблему с мертвой точки. Каталитическую деятельность осмий продолжает и в наши дни: применение его в реакциях гидрогенизации органических веществ дает отличные результаты. Этим в первую очередь обусловлен большой спрос на осмий со стороны химиков: на химические нужды расходуется почти половина его мировой добычи.

Элемент № 76 представляет немалый интерес и как объект научных исследований. Природный осмий состоит из семи стабильных изотопов с массовыми числами 184, 186–190 и 192. Любопытно, что чем меньше массовое число изотопа этого элемента, тем менее он распространен: если на долю самого тяжелого изотопа (осмия-192) приходится 41 %, то легчайший из семи «братьев» (осмий-184) располагает лишь 0,018 % общих «запасов». Поскольку изотопы отличаются друг от друга только массой атомов, а по своим физико-химическим «наклонностям» они весьма схожи между собой, то разделить их очень сложно. Именно поэтому даже «крохи» изотопов некоторых элементов стоят баснословно дорого: так, килограмм осмия-187 оценивается на мировом рынке в 14 миллионов долларов. Правда, в последнее время ученые научились «разлучать» изотопы с помощью лазерных лучей, и есть надежда, что вскоре цены на эти «товары неширокого потребления» будут заметно снижены.

Подобно другим платиновым металлам, осмий проявляет несколько валентностей. Наиболее часто встречаются соединения, где осмий четырех- и шестивалентен, однако при взаимодействии с кислородом он обычно «пускает в ход» все восемь своих валентных связей.

Из соединений осмия наибольшее практическое значение имеет его четырехокись (да-да, та самая, которой элемент так «обязан» своим названием). В роли катализатора она выступает при синтезе некоторых лекарственных препаратов. В медицине и биологии ее используют как окрашивающее средство при микроскопическом исследовании животных и растительных тканей. Следует помнить, что безобидные на вид бледно-желтые кристаллы четырехокиси осмия — сильный яд, раздражающий кожу и слизистые оболочки, вредно действующий на глаза.

Примечательна особенность четырехокиси осмия: ее растворимость в органических жидкостях значительно выше, чем в воде. Так, при обычных условиях в стакане воды растворяется всего 14 граммов этого вещества, а в стакане четыреххлористого углерода более 700 граммов.

В атмосфере серных паров порошок осмия вспыхивает, как спичка, образуя сульфид. Всеядный фтор при комнатной температуре не причиняет осмию никакого «вреда», но при нагреве до 250–300 °C образуется ряд фторидов. С тех пор как в 1913 году впервые были получены два летучих фторида осмия, считалось, что их формулы OsF6 и OsF8. Но в 1958 году выяснилось, что фторид OsF8, почти полвека «проживший» в химической литературе, на самом деле никогда не существовал, а указанные соединения соответствуют формулам OsF5 и OsF6. Сравнительно недавно ученым удалось получить еще один фторид OsF7, который при нагреве выше 100 °C распадается на OsF6 и элементарный фтор.

Окись осмия используют в качестве черного красителя для живописи по фарфору: соли этого элемента применяют в минералогии как сильные травители. Большинство же осмиевых соединений, в том числе разнообразные комплексы (осмий проявляет присущую всем платиновым металлам способность к образованию комплексных соединений), а также его сплавы (кроме уже известного осмиридия и некоторых сплавов с другими платиноидами, вольфрамом и кобальтом), пока «томится» в ожидании подходящей работы. Можно не сомневаться, что в ближайшее время вопрос их «трудоустройства» будет решен и они заговорят о себе в полный голос. Да и сам осмий еще не сказал последнего слова.

А пока инженеры и ученые ищут экономически выгодные пути расширения производства этого ценного металла, изыскивают новые источники его получения. Важные работы в этом направлении были проведены на Норильском горно-металлургическом комбинате имени А. П. Завенягина. Металлурги знали, что в медно-никелевых рудах, поступающих на комбинат, имеются металлы платиновой группы, включая осмий. Но поскольку количество его в руде было мизерным, на него не обращали внимания, стараясь получить лишь как можно больше меди и никеля.

«Почему бы не попытаться попутно извлекать этот благородный металл», задумались несколько лет назад ученые опытно-исследовательского центра комбината. Задача, которую они поставили перед собой, была очень сложной: требовалось узнать, как ведет себя осмий



Поделиться:


Последнее изменение этой страницы: 2021-01-14; просмотров: 77; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.226.214.1 (0.023 с.)