Почему поклонники Меркурия выбирают утро 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Почему поклонники Меркурия выбирают утро



   Сейчас я объясню, почему наблюдать Меркурий лучше перед рассветом, чем после заката. К концу дня Солнце успевает нагреть Землю, поэтому наблюдению неба над горизонтом на закате мешают турбулентные потоки теплого воздуха, поднимающиеся с ее поверхности. А за ночь Земля остывает, и к утру воздух становится чистым и спокойным, без турбулентных вихрей. И для того чтобы нагреть землю и снова испортить видимость, Солнцу потребуется несколько часов.

     

    

   

           Сравнительная планетология: почему Земля лучше всех

    

Меркурий – это крошечный мир экстремальных температур, но у него, как и у Земли, есть глобальное магнитное поле, что предполагает наличие у него расплавленного железного ядра, подобного земному. У Венеры и Марса нет глобального магнитного поля, но, тем не менее, у них с Землей много других общих черт. Однако вода в жидком состоянии и явное изобилие различных форм жизни сегодня присутствуют только на Земле. Так что же делает Землю такой особенной, отличной от других?

На Венере, в отличие от Земли, адская температура. Она дальше от Солнца, чем Меркурий, но еще горячее. Высокая температура обусловлена парниковым эффектом: атмосферные газы Венеры удерживают солнечное тепло, как в парнике, не давая ему уйти обратно. Возможно, в атмосфере Земли когда‑то тоже содержалось много углекислого газа, как сейчас в атмосфере Венеры. Но на Земле большое количество углекислого газа поглощают океаны, и этот газ не может удерживать тепло так, как на Венере.

А Марс, наоборот, слишком холоден для поддержания жизни. К тому же он потерял практически всю свою атмосферу. И теперь она слишком разреженная для того, чтобы создать парниковый эффект, достаточный для нагрева поверхности до температуры выше точки замерзания воды.

Итак, Венера слишком горячая, Марс слишком холодный, а Земля – как раз то, что нужно для наличия воды в жидком состоянии и жизни в том виде, в котором мы ее знаем. Собрав воедино всю информацию об основных свойствах планет земной группы и их относительных различиях, мы можем сделать следующие выводы.

Меркурий подобен Луне снаружи и Земле внутри.

Венера – это "испорченный двойник" Земли.

Марс – это маленькая погибшая Земля.

Так что оптимальная планета – Земля!

   

  

        Глава 7

Пояс астероидов и околоземные объекты

   

В этой главе…

Откуда появились астероиды

Каков риск столкновения Земли с опасным астероидом

Что делают ученые для предотвращения угрозы столкновения

Наблюдение астероидов

         

Астероиды – это большие каменистые тела, обращающиеся вокруг Солнца. Астероиды в основном двигаются за орбитой Марса и безопасны для нас, но существуют тысячи астероидов, орбиты которых подходят близко к орбите Земли или даже пересекают ее. Многие ученые считают, что примерно 65 миллионов лет назад Земля столкнулась с астероидом, и это привело к исчезновению динозавров и многих других биологических видов.

В данной главе я расскажу вам об этих огромных камнях и объясню, как их наблюдать. И, если вам интересно, скажу правду о риске столкновения Земли с астероидом в будущем и об исследованиях, которые проводят ученые в связи с этим.

   

           Астероиды, или Что осталось после рождения Солнечной системы

    

Астероиды часто называют малыми планетами. Астрономы считают, что это остатки от формирования Солнечной системы, т. е. объекты, которые так и не соединились для образования планет. У некоторых астероидов, например, Иды, есть даже собственные спутники (рис. 7.1).

    

    

Рис. 7.1. У астероида Ида есть собственный спутник Дактиль

      

   

Размеры астероидов самые разные: от самых крупных, таких как Церера, диаметр которой составляет 933 км, до самых мелких, которые относят к крупным метеорным телам. (Космический объект размером с булыжник– это очень маленький астероид или очень большое метеорное тело; выбирайте, какое название вам больше нравится.)

В настоящее время науке известно примерно 10 тысяч астероидов, причем регулярно открывают все новые и новые. Параметры орбиты точно рассчитаны примерно для 6000 из них. В малый телескоп вы легко сможете увидеть самые крупные астероиды, такие как Церера и Веста (более подробно о наблюдении астероидов мы поговорим в одном из разделов данной главы).

Церера и Веста настолько велики, что собственная гравитация делает их форму округлой. Но более мелкие астероиды обычно имеют овальную (можно даже сказать, "картофелеподобную") форму (рис. 7.2) и иногда напоминают осколки. В сущности, так оно и есть. Тела, вращающиеся в поясе астероидов, постоянно ударяют одно в другое, и от них откалываются большие и маленькие осколки. Большие осколки – это просто маленькие астероиды, а маленькие – это астероидные метеорные тела.

    

    

Рис. 7.2. Некоторые астероиды по форме напоминают большую картошку

      

   

Большинство известных астероидов находится между орбитами Марса и Юпитера. Этот район называют поясом астероидов. Время от времени мелкие астероиды (или крупные метеорные тела, как мы уже говорили) врезаются в Землю. Результатом одного из таких столкновений стал знаменитый Метеорный кратер[21] (его следовало бы назвать Метеоритным или Астероидным кратером) на севере штата Аризона, недалеко от Флагстаффа. Если у вас будет такая возможность, советую вам обязательно посетить это место, оно того стоит. Аризонский кратер – не самый крупный на Земле (существуют кратеры диаметром в сотни километров); однако он стал первым, для которого было доказано метеоритное происхождение и к тому же он лучше всех сохранил свой первоначальный вид.

Поверхность Луны покрыта ударными кратерами. На Земле большинство ударных кратеров разрушилось под действием погодных и геологических процессов, таких как образование гор, эрозия и вулканизм. Фотографии многих красивых ударных кратеров Земли, сделанные с помощью аэрофотосъемки, можно посмотреть на сайте Views of the Solar System (Виды Солнечной системы) по адресу www.solarviews.com/eng/tercrate.htm.

     

Астероиды слишком малы для того, чтобы с Земли можно было увидеть особые детали их поверхности даже с помощью самых мощных телескопов; по большей части, они выглядят в небе как звезды. Но если вы понаблюдаете звездное небо в телескоп пару часов (или пару ночей), то сможете увидеть астероиды, перемещающиеся на фоне звездного неба.

   

           Угрожают ли Земле околоземные объекты?

    

      К сожалению, не все астероиды безопасно расположены за орбитой Марса. Орбиты тысяч мелких астероидов подходят близко к орбите Земли или даже пересекают ее. В эту группу околоземных объектов (Near Earth Object– NEO) входит около 170 тысяч потенциально опасных астероидов (Potentially Hazardous Asteroids – РНА); это означает, что однажды они могут оказаться в опасной близости от Земли или даже врезаться в нее. Центр малых планет (Minor Planet Center) Международного астрономического союза ведет учет РНА, и несколько обсерваторий занимаются "прочесыванием" неба в поисках новых РНА.

  Астрономам не известны какие‑либо особые объекты, которые в настоящее время угрожают Земле. Те, кто верят в теории о заговоре молчания, считают: если бы астрономы знали об астероиде "конца света", то не сказали бы. Но посудите сами: если бы я знал, что Земля в опасности, то оставил бы все дела и отправился куда‑нибудь к южным морям, а не писал эту книгу.

  В 1998 году в голливудских фильмах "Армагеддон" и "Столкновение с бездной" представили сенсационные версии того, что может случиться, если крупный астероид или комета окажутся на пути Земли. Истории о подобных катастрофах отчасти основаны на широко признанном выводе о том, что около 65 миллионов лет назад в Землю врезался астероид диаметром примерно 10 км. Возможно, в результате этого столкновения образовался кратер Чиксулуб диаметром 180 км, который частично находится на полуострове Юкатан, а частично – в море, в Мексиканском заливе. Существует мнение, что именно это событие стало причиной исчезновения динозавров (во всяком случае, можно с уверенностью утверждать, что ничего хорошего это им не принесло).

  В марте 1998 года всеобщий ажиотаж вызвало объявление в СМИ о том, что только что открытый небольшой NEO может врезаться в Землю в 2028 году. Но вскоре, после проведения дополнительных наблюдений и расчетов, ученые установили, что орбита этого астероида не пересечется с орбитой Земли.

  В настоящее время считается, что Земле ничто не угрожает. Но вполне возможно, что в будущем обнаружат NEO, который окажется на пути Земли, поэтому ученые размышляют о том, что можно сделать в такой ситуации.

    

              Как подтолкнуть астероид

     

Некоторые специалисты предлагают создать ракету с мощным ядерным зарядом, чтобы остановить астероид‑убийцу до момента столкновения. Но если мы взорвем астероид, направляющийся в нашу сторону, то результат может быть хуже, чем в случае столкновения.

  Если мы взорвем астероид атомной бомбой, то на смертельной траектории по направлению к Земле окажется не один большой камень, а множество мелких, как разделяющиеся боеголовки с индивидуальным наведением баллистической ракеты СС‑20. А СС‑20 (или ее аналоги) – это баллистическая ракета с самой мощной поражающей способностью. Она несет на борту несколько атомных зарядов, которые выпускают и наводят по разным вражеским целям. Но осколки астероида обладают гораздо большей энергией, чем все оружие России и США вместе взятое. Поэтому лучше не взрывать астероид, а использовать ракету с ядерным зарядом (или, возможно ракету какого‑то другого типа), только чтобы подтолкнуть астероид, тогда он окажется в расчетной точке встречи немного раньше или немного позже Земли. И столкновения не будет. Фу! (можно вздохнуть с облегчением).

  Но проблема в том, что ученые не знают, какую силу нужно приложить, чтобы подтолкнуть астероид. Мы не хотим разбивать его на части, но, поскольку механическая прочность астероида неизвестна, не знаем, насколько сильно нужно ударить по нему. Астероиды могут состоять из твердых или хрупких каменистых пород, а некоторые – почти полностью из металла. И весь вопрос в том, с каким именно нам придется иметь дело. А если не знать врага, то, ударив по нему, можно получить еще худший результат. Поэтому нужно разработать систему надежной защиты Земли от астероидов.

    

              Предупрежден – значит вооружен

     

У астрономов есть план создания системы защиты Земли от опасных астероидов. Он состоит в следующем.

Во‑первых, создать полный список околоземных объектов, чтобы быть уверенными в том, что мы обнаружили все камни диаметром в километр и больше, относящиеся к сфере нашего интереса. Имеются в виду астероиды, достаточно большие и близкие для того, чтобы представлять потенциальную угрозу Земле.

 

Затем следить за этими NEO и рассчитывать параметры их орбит, чтобы знать, не может ли какой‑либо из них врезаться в Землю в обозримом будущем.

 

И наконец, изучать физические свойства астероидов, чтобы узнать о них как можно больше.

 

Затем, когда мы будем знать опасность в лицо, разработать ракету, чтобы противостоять нависшей угрозе.

      

Для наблюдения NEO в нескольких местах установлены телескопы, специально предназначенные для поиска астероидов. О результатах их работы можно узнать, например, на следующих сайтах.

 

Проект Исследование околоземных астероидов в Лаборатории им. А. Линкольна (Lincoln Near Earth Asteroid Research – LINEAR), финансируемый Военно‑воздушными силами США. Телескоп установлен в Вайт‑Сендсе, штат Нью‑Мексико (www.ll.mit.edu/LINEAR).

 

Проект NASA слежения за околоземными астероидами (Near Earth Asteroid Tracking – NEAT). Наблюдения проводятся из обсерватории на Гавайях (http://neat.jpl.nasa.gov).

      

Существует также негосударственная организация, Spaceguard Foundation, цель которой – спасение Земли от астероидов‑убийц. Возможно, они переоценивают свои силы; одно только спасение китов или пятнистых сов – уже очень сложная задача. Но вы можете более подробно узнать об этой организации на Web‑сайте spaceguard.ias.rm.cnr.it и даже присоединиться к ней.

  Список потенциально опасных астероидов ведется Центром малых планет на сайте сfa‑www.harvard.edu/iau/lists/Dangerous.html. Видимо, ни один из этих астероидов не больше 16 км в диаметре, причем большинство намного меньше. Но если астероид диаметром в несколько километров врежется в Землю на скорости 11 км/с, то произойдет гораздо более страшная катастрофа, чем при одновременном взрыве всех атомных бомб, созданных человечеством. И это именно тот редкий случай, когда астрономия – не удовольствие и не шутки.

    

              Маленькие световые точки: поиск астероидов

     

Поиск астероидов чем‑то напоминает поиск комет (см. главу 4), за исключением того, что на этот раз нужно искать небольшие световые точки, которые не размыты, а похожи на звезды. Но, в отличие от звезд, движение астероидов заметно на фоне звездного неба – от часа к часу и от ночи к ночи.

      

В малый телескоп легко увидеть самые крупные астероиды, такие как Церера и Веста; в периоды их хорошей видимости в астрономических журналах и на Web‑сайтах обычно заранее публикуют карты, по которым можно ориентироваться. С помощью хороших программ‑планетариев также можно создать звездные карты, на которых будет показано местонахождение этих астероидов.

  В табл. 7.1 перечислены самые крупные объекты пояса астероидов. Два самых крупных, Церера и Паллас, находятся примерно на одинаковом расстоянии от Солнца, но орбита Палласа представляет собой намного более вытянутый эллипс, чем орбита Цереры.

 

Поиск неизвестных в настоящее время астероидов часто ведут опытные астрономы‑любители с помощью установленных на телескопах фотоаппаратов с электронным блоком управления. Они делают ряд снимков выбранной области неба, обычно в направлении, противоположном Солнцу (которое, естественно, находится за горизонтом), а затем сравнивают их. И если заметно, что маленькая световая точка (похожая на звезду) меняет свое положение от одного снимка к другому, то, вероятно, это астероид.

  Вы сумеете вести систематический поиск неизвестных астероидов только через несколько лет практики, когда станете опытным астрономом‑любителем. Но как только вы научитесь использовать телескоп, займитесь наблюдением некоторых хорошо известных астероидов. Поищите в астрономических журналах и на Web‑сайтах звездные карты и описания к ним, которые помогут вам сориентироваться для обнаружения крупных астероидов.

    

              Астероидные покрытия

     

Покрытие – это вид затмения, которое происходит, когда движущееся тело в Солнечной системе проходит перед звездой. Бывают покрытия звезд Луной (лунные покрытия), астероидами (астероидные покрытия), планетами (планетные покрытия), спутниками и кольцами планет, а также кометами.

      

Конечно, можно просто получать удовольствие от наблюдения покрытия, не занимаясь сбором научных данных, но зачем же терять уникальную возможность! Параметры покрытия меняются в зависимости от того, в какой точке Земли находится наблюдатель. На основании данных о покрытии астрономы могут получить более точные сведения о количестве небесных объектов. Например, иногда покрытие позволяет обнаружить, что объект, казавшийся обычной звездой – на самом деле двойная звезда, т. е. система из двух звезд, обращающихся вокруг общего центра масс.

  Чтобы ваши наблюдения представляли научную ценность, нужно точно отмечать время и место (широта, долгота и высота над уровнем моря) их проведения. В прошлом наблюдатели определяли свое местонахождение по топографическим картам. Но сегодня, если наблюдения проводятся группой астрономов‑любителей, у одного из них, возможно, есть GPS‑терминал (т. е. терминал глобальной системы определения местонахождения). Такой прибор можно купить примерно за 350 долларов, и с его помощью вы сумеете точно определить свои координаты.

    

              Помощь в наблюдении покрытий

     

Астероидные покрытия наблюдать намного сложнее, чем лунные, потому что их, как правило, нельзя предсказать заранее с достаточной точностью. Астрономы отправляются в различные места, где, по прогнозам, можно наблюдать астероидные покрытия. Но поскольку диаметр, параметры орбиты и форма большинства астероидов известны с недостаточной точностью, прогнозы также не могут быть точными. В одних местах покрытия видны, а в других – нет, поэтому для наблюдения за ними нужны добровольцы в разных местах. Любительские наблюдения помогают определить форму и размеры астероидов – участников покрытия.

      

Самые последние прогнозы покрытий можно найти на Web‑сайте Международной ассоциации определения моментов покрытий (International Occultation Timing Association – IOTA) по адресу lunar‑occultations.com/iota/iotandx.htm. А в русскоязычной Internet о покрытии звезд астероидами в 2004 году можно узнать на сайте Дениса Денисенко по адресу hea.iki.rssi.ru/~denis/occ2004.html; на этом же сайте приведены карты наблюдения покрытий по регионам Европа, Сибирь и Дальний Восток.

      

ЮТА рекомендует начинающим наблюдать покрытия вместе с опытным астрономом, чтобы научиться этому искусству и приобрести нужные навыки.

    

   

  

        Глава 8

Газовые гиганты Юпитер и Сатурн

   

В этой главе…

Газовые гиганты

Особенности Юпитера

Большое Красное Пятно

Наблюдение спутников Юпитера

Кольца и спутники Сатурна

     Юпитер и Сатурн представляют собой великолепное зрелище в малый телескоп, причем один из них или даже оба обычно удачно расположены в небе, так что их удобно наблюдать. Четыре самых крупных спутника Юпитера и знаменитые кольца Сатурна – это объекты, которые астрономы‑любители очень любят демонстрировать своим друзьям и родственникам. Но эти планеты‑гиганты и их спутники поражают не только внешним видом, но и теми научными открытиями, которые были сделаны в связи с ними.

   

           Атмосфера Юпитера и Сатурна

    

То, что вы видите на Юпитере и Сатурне, – это облака, состоящие из белых кристаллов аммиака, водяного льда (как перистые облака на Земле) и соединения под названием гидросульфид аммония. Облака из водяных капель также могут быть частью этой смеси. Но внешность обманчива, так как вещество облаков – остаточное. Юпитер и Сатурн состоят, в основном, из водорода и гелия, как и Солнце. И, несмотря на многочисленные теории, ученые не могут понять, какие химические вещества делают Большое Красное Пятно на Юпитере красным или создают беловато‑желтоватые оттенки в облаках двух этих огромных планет.

Юпитер и Сатурн – это две самые крупные из четырех газовых планет‑гигантов (две остальные – Уран и Нептун). Масса Юпитера в 318 раз, а Сатурна – примерно в 95 раз превышает земную. На этих планетах огромная сила тяжести, а вес верхних атмосферных слоев создает чудовищное давление. Спуск на Юпитер или Сатурн чем‑то напоминает глубоководное погружение. Чем ниже вы опускаетесь, тем выше становится давление. Но об акваланге нечего и думать. Давление высочайшее и, в отличие от моря, по мере "погружения" температура резко возрастает.

Высоко в атмосферных слоях, там где облака, температура падает до ‑149 °C на Юпитере и до ‑178 °C на Сатурне. А ниже действует давление. Если опуститься с уровня облаков Юпитера на 10 тысяч километров, то давление там будет превышать земное атмосферное давление на уровне моря в миллион раз. А температура будет такой же, как на видимой поверхности Солнца. Но Юпитер намного таинственнее Солнца. Плотность газа на этом уровне намного выше, чем на поверхности Солнца, и горячий водород настолько сжат, что ведет себя, словно жидкий металл.

Вихревые течения этого "жидкого металлического" водорода создают на Юпитере и Сатурне мощные магнитные поля, простирающиеся далеко в космос.

Земля почти всю свою энергию получает от Солнца, в то время как Юпитер и Сатурн ярко светятся инфракрасным светом, причем каждый из них генерирует почти столько же энергии, сколько получает от Солнца. Внутреннее тепло Земли создается за счет энергии, выделяемой радиоактивными веществами, такими как уран. Но огромная сила тяжести Юпитера и Сатурна сжимает их, а если сжать газ, он нагревается. Поэтому глубоко внутри эти планеты чрезвычайно горячие. Поднимающееся вверх тепло, вместе с идущими вниз сияющими лучами Солнца, вносят возмущения в атмосферу и создают сильные воздушные потоки, ураганы и другие атмосферные бури, которые постоянно меняют внешний вид этих планет.

   

           Наблюдение Юпитера

    

      Масса Юпитера составляет примерно тысячную долю массы Солнца. Иногда его называют даже "неудавшейся звездой". Если бы его масса была всего в 80–90 раз больше, то температура и давление в его центре стали бы столь высокими, что начался бы процесс ядерного синтеза. И тогда Юпитер действительно стал бы звездой!

 

Юпитер легко найти, потому что он, как и Венера, ярче любой другой звезды в небе. (Небольшое исключение: когда Юпитер находится с обратной стороны Солнца, он выглядит тусклее, чем самая яркая звезда, Сириус.) Если использовать телескоп с компьютерным блоком управления, который может ориентироваться по положению планеты, или просто знать, куда смотреть, то иногда можно увидеть Юпитер даже днем.

      

Юпитер – это действительно огромный газовый шар, экваториальный диаметр которого составляет примерно 143 тысячи километров. Эта гигантская планета вращается с огромной скоростью, делая один полный оборот всего за 9 часов 55 минут 30 секунд. Из‑за такой большой скорости создаются постоянно меняющиеся полосы облаков, параллельные экватору планеты. Наблюдая Юпитер в телескоп, вы на самом деле видите верхний слой его облаков. В зависимости от условий наблюдения, размера и качества телескопа, а также состояния самого Юпитера, можно увидеть от всего одной до целых 20 полос облаков (рис. 8.1).

 

     

     

  Рис. 8.1. Юпитер и его полосы облаков

       

    

  Более темные полосы облаков Юпитера называют поясами, а более светлые– зонами. Рядом с центром диска находится Экваториальная Зона, ограниченная по бокам Северным и Южным экваториальными поясами (North Equatorial Belt – NEB и South Equatorial Belt – SEB). В SEB находится Большое Красное Пятно, самая заметная деталь Юпитера. Это атмосферное возмущение, которое иногда сравнивают с мощным ураганом, "висит" в атмосфере Юпитера уже по меньшей мере 120 лет. На самом деле Большое Красное Пятно можно было увидеть уже в 1664 году, но затем оно "угасло" и появилось снова лишь в XIX веке.

    

              В поисках Большого Красного Пятна

     

Большое Красное Пятно, показанное на рис. 8.2, – это вихревое образование размером с Землю, а иногда и больше. Как и большинство деталей Юпитера, оно меняется день ото дня. Его цвет может побледнеть или стать более насыщенным. Белые облака, которые настолько велики, что их видно в некоторые любительские телескопы, образуются возле этого пятна и движутся вдоль Южного экваториального пояса. Иногда кажется, что облако в SEB или в другом поясе растягивается по всей планете. Облако такой формы называется гирляндой (festoon) и наблюдение этого удивительного зрелища – настоящий праздник!

     

     

  Рис. 8.2. Большое Красное Пятно Юпитера

   Фотография любезно предоставлена NASA

     

  В начале 1990‑х годов один из поясов Юпитера, казалось, внезапно исчез. Но впоследствии он появился вновь. И если это произойдет опять, то, вполне возможно, первым это обнаружит какой‑нибудь астроном‑любитель.

  У Юпитера тоже есть кольца[22], состоящие из небольших каменистых частиц. В отличие от колец Сатурна, они темные и не видны в любительские телескопы. Но на самом деле их трудно увидеть в любой телескоп, за исключением телескопа "Хаббл" и тех инструментов, которые доставляют прямо к Юпитеру космические зонды.

 

Если сначала вы не увидите Большое Красное Пятно, то, возможно, вы смотрите на него в момент, когда оно побледнело. Но вероятнее, что пятно просто находится на обратной стороне Юпитера. Поэтому вам придется подождать, пока Юпитер повернется так, чтобы оно показалось снова. Если вы будете рассматривать в телескоп детали Юпитера с часовыми или двухчасовыми интервалами в течение ночи, но увидите, что эти детали перемещаются по диску планеты по мере вращения Юпитера.

      

Юпитер вращается так быстро, что это вращение делает его выпуклым возле экватора и сплющенным на полюсах. Если наблюдать его ясной ночью при спокойном состоянии атмосферы, то можно увидеть в телескоп этот сплющенный сфероид.

    

              Охота за Галилеевыми спутниками

     

При спокойном состоянии атмосферы и хорошей видимости можно увидеть в телескоп детали Юпитера и, возможно, один или несколько его спутников. У Юпитера четыре крупных спутника – Ио, Европа, Ганимед и Каллисто.

 

Четыре самых известных спутника Юпитера называют также Галилеевыми спутниками в честь их первооткрывателя Галилео Галилея[23]. Орбиты всех этих четырех спутников практически полностью лежат в экваториальной плоскости Юпитера. Поэтому каждый из них всегда находится прямо над какой‑либо точкой экватора Юпитера. Спутники Юпитера можно увидеть в любой телескоп, а многим даже удается увидеть два‑три спутника в хороший бинокль. Спутник Юпитера Ио, находящийся ближе всего к его поверхности, трудно увидеть в бинокль, потому что он всегда расположен рядом со своей яркой планетой. Помимо перечисленных крупных, у Юпитера есть еще множество более мелких спутников.

      

Вы не сумеете увидеть в свой телескоп много деталей на любом из спутников Юпитера (или Сатурна) и, таким образом, понять, что представляет собой их поверхность. Но наверняка заметите разницу в их яркости и (при внимательном наблюдении), возможно, в цвете.

  Но если вы посмотрите на фотографии Галилеевых спутников, сделанные с помощью космического зонда, то увидите, что каждый спутник– это маленький самостоятельный мир, структура и пейзаж которого придает ему индивидуальный характер.

 

Ганимед, диаметр которого составляет 5268 км, – больше Меркурия (диаметр которого – 4880 км); он считается самым крупным спутником в Солнечной системе. Пятнистая поверхность Ганимеда состоит из светлых и темных зон; предполагают, это покрытые льдом и каменистые районы соответственно. Самая заметная его деталь – Валгалла, огромный кольцевидный ударный бассейн, по размерам примерно такой же, как континентальная часть США (если оценивать его размер по самому внешнему кольцевому гребню).

 

Поверхность Ио усеяна более чем 80 активными вулканами. Помимо Земли, это единственное место, где есть явные свидетельства идущих вулканических процессов. Вероятнее всего, вулканы Марса давно мертвы, а свидетельства активного вулканизма на Венере весьма противоречивы – здесь можно различить большие вулканы, но они, скорее всего, тоже мертвы.

 

На Европе есть складчатые структуры, похожие на ледяные торосы. Похоже, ее поверхность – это ледяная корка, под которой находятся талый снег и океаны воды, возможно, глубиной 150 км. Помимо Земли, это единственное место в Солнечной системе, где есть веские доказательства наличия воды в жидком состоянии. Наличие воды на Марсе под слоем вечной мерзлоты – это только теория.

 

У Каллисто темная поверхность, усеянная многочисленными белыми кратерами. Вероятно, ее поверхность представляет собой грязный лед, смесь льда и камня. А в местах ударов астероидов, комет и крупных метеоритов на поверхность из нижних слоев вышел чистый лед. Отсюда и белые кратеры.

      

Конечно, вы не будете наблюдать спутники Юпитера крупным планом, так как для этого необходимо очень сложное специальное оборудование. Но в телескоп можно увидеть некоторые аспекты этих спутников (об этом – в следующем разделе).

 

Ио, Ганимед, Европа и Каллисто постоянно движутся, меняют свое относительное положение и, по мере обращения вокруг Юпитера, то появляются, то исчезают. Если вы не видите один из этих спутников, то вот некоторые вероятные причины.

 

Может, сейчас покрытие, когда один из спутников проходит за диском Юпитера.

 

Может, сейчас затмение спутника, когда он заходит в тень Юпитера. Поскольку Земля обычно находится в стороне от прямой линии "Солнце‑Юпитер", тень Юпитера может простираться далеко в сторону от него (с точки зрения наблюдателя с Земли). Когда хорошо видимый спутник, находящийся далеко от Юпитера (а не за его диском), внезапно тускнеет и исчезает, значит, он зашел в тень Юпитера.

 

Спутник может быть в транзите перед диском Юпитера; в это время его особенно трудно увидеть. Дело в том, что спутники имеют бледные цвета, и по этой причине их трудно разглядеть на фоне облачной атмосферы Юпитера. На самом деле спутник в транзите разглядеть намного труднее, чем его тень (см. ниже).

 

Вы можете наблюдать также тень спутника, когда один из них оказывается между Юпитером и Солнцем и отбрасывает тень на планету. Тень – это черное пятно, намного более темное, чем любое облако, перемещающееся на фоне диска планеты. Спутник, отбрасывающий тень, в это время может быть в транзите, т. е. с точки зрения наблюдателя на Земле он виден на фоне диска Юпитера. Но так бывает не всегда. Когда Земля находится далеко в стороне от линии "Солнце‑Юпитер", на Юпитер может отбрасывать тень спутник, который не находится перед его диском.

      

Когда наблюдать спутники

  Ежемесячное расписание покрытий, затмений, транзитов и других астрономических событий четырех Галилеевых спутников можно найти в журналах и на Web‑сайтах. Можно найти также ежедневные схемы положений этих четырех спутников относительно диска Юпитера. Чтобы отличить один спутник от другого, нужно сравнить то, что вы видите в телескоп, с картой. При наблюдении покрытий, затмений, транзитов и других астрономических событий помните следующее.

 

Все четыре Галилеевых спутника обращаются вокруг Юпитера в одном направлении. Когда они находятся с ближней к Земле стороны Юпитера (с точки зрения наблюдателя на Земле), то движутся с востока на запад, а когда с обратной – то движутся с запада на восток.

 

Поэтому спутник в транзите движется в западном направлении, а спутник, с которым должно произойти покрытие или затмение, – в восточном. Имеются в виду географические направления (восток‑запад) в небе над Землей.

      

При отличных условиях видимости в телескоп с диаметром объектива 15 см и больше можно даже рассмотреть некоторые детали на Ганимеде, самом крупном из Галилеевых спутников. (Более подробно о телескопах говорилось в главе 3.) Но, чтобы рассмотреть детали поверхности, необходимо изображение, полученное межпланетным космическим аппаратом, посетившим систему Юпитера.

 

Самые лучшие изображения Юпитера и его спутников получены космическими зондами Galileo и Voyager‑1 и Voyager‑2, а также космическим телескопом "Хаббл". Изображения, сделанные Galileo, находятся по адресу galileo.iw.nasa.gov/images.html. А коллекцию изображений, сделанных телескопом "Хаббл", можно посмотреть на сайте Института космических исследований с помощью телескопов (Space Telescope Science Institute) по адресу oposite.stsci.edu/pubinfо/SolarSystemT.html#Jupiter. Изображения, полученные космическим зондом Voyager, а также некоторые другие, вы найдете на Web‑сайте "Планетный фотожурнал NASA" (NASA's Planetary PhotoJournal) по адресу photojournal.jpl.nasa.gov/. Чтобы попасть в нужный раздел, щелкните на изображении Юпитера.

      

     

 

Юпитер и кометы

   Иногда, очень редко, в Юпитер врезается комета, и тогда появляется темное пятно, которое может быть видно несколько месяцев. Никто не знал об этом до июля 1994 года, когда огромные осколки распавшейся кометы Шумейкера‑Леви врезались в Юпитер. Но астрономы изучили старые сведения о деталях на диске Юпитера и обнаружили несколько подозрительных отметин, которые, вероятно, возникли таким же образом.

   Конечно, маловероятно, что вы увидите, как комета врезается в Юпитер, но эту возможность тоже нужно иметь в виду. Поэтому, если вы увидите какое‑нибудь новое темное пятно, сделайте заметку об этом и постарайтесь зарисовать его расположение.

   Астроном‑любитель Дэвид Леви стал известным на весь мир после того, как помог открыть комету Шумейкера‑Леви‑9, врезавшуюся в Юпитер. Благодаря своим ясным и понятным отчетам об этом и других астрономических событиях он теперь получает высокие гонорары за лекции, статьи и книги. И вы тоже можете стать всемирно известным – для этого достаточно внимательно наблюдать за движением небесных объектов в Солнечной системе!

     

    

              Миссия Galileo

     

Космический зонд Galileo был запущен к Юпитеру в 1989 году и в декабре 1995 года вышел на орбиту планеты. В течение 8 лет Galileo изучал Юпитер с близкого расстояния. Несмотря на неудачи, преследовавшие его с самого начала, эта космическая миссия оказалась одной из самых удачных. Впервые за всю историю космических исследований, ученые получили точные данные об атмосфере Юпитера и о его естественных спутниках – Европе, Ганимеде, Ио и Каллисто.

  С борта автоматической исследовательской станции на Землю была передана информация о составе атмосферы планеты и характеристиках ее магнитного поля. Эти данные п



Поделиться:


Последнее изменение этой страницы: 2021-01-14; просмотров: 92; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.146.255.127 (0.153 с.)