И 16-разрядные звуковые платы 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

И 16-разрядные звуковые платы



 

Первым стандартом MPC предусматривался “8-разрядный” звук. Это не означает, что звуковые платы должны были вставляться в 8-разрядный разъем расширения. Разрядность звука характеризует количество бит, используемых для цифрового представления каждой выборки.

При восьми разрядах количество дискретных уровней звукового сигнала составляет 256, а если использовать 16 бит, то их количество достигает 65 536 (при этом, естественно, качество звука значительно улучшается). Для записи и воспроизведения речи достаточно 8-разрядного представления, а вот для музыки требуется 16 разрядов. На рис. 16.7 показано различие между 8- и 16-разрядным представлением звука.

 

Рис. 5. Шестнадцатиразрядное разрешение позволяет более точно воспроизводить звук по сравнению с восьмиразрядным

 

Большинство старых плат поддерживают лишь 8-разрядное представление звука. Все современные платы обеспечивают 16-разрядов и даже более.

Качество записываемого и воспроизводимого звука, наряду с разрешением, определяется частотой дискретизации (количеством выборок в секунду). Теоретически она должна быть в два раза выше максимальной частоты сигнала (т.е. верхней границы частот) плюс десятипроцентный запас. Предел слышимости человеческого уха — 20 кГц. Записи с компакт-диска соответствует частота 44,1 кГц.

Звук, дискретизированный на частоте 11 кГц (11 000 выборок в секунду) получается более размытым, чем звук, дискретизированный на частоте 22 кГц. Объем дискового пространства, необходимый для записи 16-разрядного звука с частотой дискретизации 44,1 кГц в течение одной минуты, составит 10,5 Мбайт! При 8-разрядном представлении, монофоническом звучании и частоте дискретизации 11 кГц необходимое дисковое пространство сокращается в 16 раз. Эти данные можно проверить с помощью программы Звукозапись. Попробуйте записать звуковой фрагмент с различными частотами дискретизации и посмотрите на объем полученных файлов.

 

Трехмерный звук

 

Одним из наиболее сложных испытаний для звуковых плат, входящих в состав игровых систем, является выполнение задач, связанных с обработкой трехмерного звука. Существует несколько факторов, усложняющих решение задач подобного рода:

· разные стандарты позиционирования звука;

· аппаратное и программное обеспечение, используемое для обработки трехмерного звука;

· проблемы, связанные с поддержкой DirectX.

 

Позиционный звук

 

Позиционирование звука является общей технологией для всех 3D-звуковых плат и включает в себя настройку определенных параметров, таких, как реверберация или отражение звука, выравнивание (баланс) и указание на “расположение” источника звука. Все эти компоненты создают иллюзию звуков, раздающихся впереди, справа, слева от пользователя или даже за его спиной. Наиболее важным элементом позиционного звука является функция преобразования HRTF (Head Related Transfer Function), определяющая изменение восприятия звука в зависимости от формы уха и угла поворота головы слушателя. Параметры этой функции определяют условия, при которых “реалистичный” звук может восприниматься совершенно иначе при повороте головы слушателя в ту или другую сторону. Использование акустических систем с несколькими колонками, “окружающими” пользователя со всех сторон, а также сложные звуковые алгоритмы, дополняющие воспроизводимый звук управляемой реверберацией, позволяют сделать синтезированный компьютером звук еще более реалистичным.

 

Обработка трехмерного звука

 

Вторым по важности фактором качественного звучания являются различные способы реализации обработки трехмерного звука в звуковых платах. Существуют следующие основные методы обработки звука:

· централизованная обработка (для обработки трехмерного звука используется центральный процессор, что приводит к снижению общего быстродействия системы);

· обработка звуковой платы (которая называется также 3D-ускорением).

Обработка трехмерного звука в аудиоадаптерах происходит либо с использованием центрального процессора системы, либо с помощью мощного цифрового обработчика сигналов (DSP), выполняющего обработку непосредственно в звуковой плате. Звуковые платы, осуществляющие централизованную обработку трехмерного звука, могут стать основной причиной снижения частоты смены кадров (числа анимированных кадров, выводимых на экран за каждую секунду) при использовании функции трехмерного звука. В звуковых платах со встроенным аудиопроцессором частота смены кадров при включении или отключении трехмерного звука почти не изменяется.

Как показывает практика, средняя частота смены кадров реалистичной компьютерной игры должна быть не меньше 30 кадр/с (кадров в секунду). При использовании быстродействующего процессора, например Pentium III 800 МГц, и какой-либо современной 3D-звуковой платы такая частота достигается достаточно легко. Но любители компьютерных игр, использующие более медленный процессор, скажем Celeron 300A с рабочей частотой 300 МГц, и плату с централизованной обработкой трехмерного звука, обнаружат, что частота смены кадров будет намного ниже 30 кадр/с. Чтобы увидеть, как влияет обработка трехмерного звука на скорость компьютерных игр, воспользуйтесь функцией отслеживания частоты кадров, встроенной в большинство игр, или обратитесь к источникам, проводящим обзоры игрового аппаратного обеспечения. Частота смены кадров связана непосредственно с коэффициентом использования процессора; повышение ресурсных требований к процессору приведет к уменьшению частоты смены кадров.

Технологии трехмерного звука и трехмерного видеоизображения представляют наибольший интерес прежде всего для разработчиков компьютерных игр. Однако использование трехмерных технологий в коммерческой среде также не за горами.

 



Поделиться:


Последнее изменение этой страницы: 2020-12-09; просмотров: 73; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.144.25.74 (0.006 с.)