Тема 1.4. Эксплуатация оборудования систем отопления жилищно-коммунального хозяйства. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Тема 1.4. Эксплуатация оборудования систем отопления жилищно-коммунального хозяйства.



Тема 1.4. Эксплуатация оборудования систем отопления жилищно-коммунального хозяйства.

1. Системы отопления зданий.                                                                                                           Классификация систем отопления зданий.                                                                                                          Отопительные приборы и арматура.

2. Возможные неисправности и способы их устранения в системах отопления.                                                                                                                                                   Основные положения по эксплуатации оборудования систем отопления.                                                             Эксплуатационные требования к системам отопления.                                                                    Неисправности в работе систем отопления и их устранение.                                                                                              Наладка систем отопления.                                                                                                                           Безопасные методы эксплуатации и обслуживания систем отопления.

3. Подготовка внутридомовых систем отопления к сезонной эксплуатации.                          

Выполнение консервации внутридомовых систем отопления.                                                                                  Промывка системы отопления.

 

Системы отопления зданий. Классификация систем отопления зданий. Отопительные приборы и арматура.

Характеристика систем отопления.

В зависимости от преобладающего способа теплопередачи отопление помещений может быть конвективным или лучистым.

К конвективному относиться отопление, при котором температура внутреннего воздуха поддерживается на более высоком уровне, чем радиационная температура помещения, понимая под радиационной, усредненную температуру поверхностей, обращенных в помещение, вычисленную относительно человека, находящегося в середине этого помещения.

Лучистым называют отопление при котором радиационная температура помещения ниже температуры воздуха. Лучистое отопление при несколько пониженной температуре в помещении, более благоприятно для самочувствия человека (например, до 18-20 С вместо 20-22 С в помещениях гражданских зданий).

Система отопления – это совокупность конструктивных элементов со связями между ними, предназначенных для получения, переноса и передачи теплоты в обогреваемые помещения здания.

Система отопления предназначена для возмещения теплопотерь отапливаемых помещений.

Основные конструктивные элементы системы отопления: теплоисточник - элемент для получения теплоты;

Теплопроводы - элемент для переноса теплоты от теплоисточника к отопительным приборам;

отопительные приборы - элемент для передачи теплоты в помещение.

К системе отопления предъявляются требования:

1. санитарно-гигиенические: поддержание заданной температуры воздуха и внутренних поверхностей ограждений помещения во времени, в плане и по высоте при допустимой подвижности воздуха, ограничение температуры на поверхности отопительных приборов;

2. экономические: оптимальные капитальные вложения, экономный расход тепловой энергии при эксплуатации;

3. архитектурно-строительные: соответствие интерьеру помещения, компактность, увязка со строительными конструкциями, согласование со сроком строительства здания;

4. производственно-монтажные: минимальное число унифицированных узлов и деталей, механизация их изготовления, сокращение трудовых затрат и ручного труда при монтаже;

5. эксплуатационные: эффективность действия в течении всего периода работы, надежность и техническое совершенство, безопасность и бесшумность действия.

Классификация систем отопления

"Сердцем" отопительной системы является котел. От него нагретый теплоноситель (вода или антифриз) с помощью циркуляционного насоса (если система с принудительной циркуляцией) или без него (естественная циркуляция) движется по трубам и отдает тепло вашему дому через отопительные приборы. Кроме вышеназванных основных элементов в систему отопления входит еще масса других более мелких, но необходимых для нормальной работы вещей: расширительный бак — компенсирующий температурное расширение воды, фитинги — для соединения труб, воздушные клапаны и многое другое.

Типы систем отопления

По типу циркуляции:

Системы с принудительной и естественной циркуляцией.

В системе с принудительной циркуляцией движение теплоносителя осуществляется с помощью циркуляционного насоса. Плюсами такой системы являются: комфорт (есть возможность поддерживать заданную температуру в каждой комнате), более высокое качество, небольшой диаметр труб, меньшая разница температур выходящей из котла нагретой воды и возвращающейся в котел остывшей (увеличивает срок службы котла). Основной и, пожалуй, единственный минус таких системнасос требует наличия электричества. В системе с естественной циркуляцией насоса нет. Роль насоса в ней выполняет гравитационная сила, возникающая за счет разности плотности (удельного веса) теплоносителя в подающей и обратной трубах (плотность горячей воды меньше, т. е. она легче, чем холодная). Для такой системы требуются трубы большого диаметра (чтобы снизить сопротивление), она практически не поддается регулированию, и при ее использовании вы получаете меньший комфорт при больших затратах топлива.

Теплоносители.

Вода представляет собой жидкую, практически не сжимаемую средусо значительной плотностью и теплоемкостью. Вода изменяет плотность объем и вязкость в зависимости от температуры, а температуру кипения в зависимости от давления, способна сорбировать или выделять растворимые в ней газы при изменения температуры и давления.

Пар является легко подвижной средой со сравнительно малой плотностью. Температура и плотность пара зависят от давления. Пар значительно изменяет объем и энтальпию при фазовом превращении.

Воздух является легкоподвижной средой со сравнительно малыми вязкостью, плотностью и теплоемкостью, изменяющей плотность и объем в зависимости от температуры.

Сравнение основных теплоносителей для отопления

параметры вода пар воздух
Температура, разность температуры,С 150-70=80 130 60-15=45
Плотность кг\м3 917 1,5 1,03
Удельная массовая теплоемкость кДж\кг 4,31 1,84 1,0
Удельная теплота конденсации, кДж\кг - 2175 -
Количество теплоты для отопления в объеме 1 м3 теплоносителя, кДж 316370 3263 46,4
Скорость движения, м\с 1,5 80 15

ПРЕИМУЩЕСТВА и НЕДОСТАТКИ

Вода

+ Обеспечивается достаточно равномерная температура помещений, можно ограничить температуру поверхности отопительных приборов, сокращается по сравнению с другими теплоносителями площадь поперечного сечения труб, достигается бесшумность движения в теплопроводах.

- Недостатками применения воды является значительный расход металла и большое гидростатическое давление в системах. Тепловая инерция воды замедляет регулирование теплоотдачи приборов.

Пар + сравнительно сокращается расход за счет уменьшения площади приборов и поперечного сечения конденсатопроводов, достигается быстрое прогревание приборов и отапливаемых помещений, гидростатическое давление пара в вертикальных трубах по сравнению с водой минимально.

- пар не отвечает санитарно-гигиеническим требованиям, его температура высока и постоянна при данном давлении, что затрудняет регулирование теплопередачи приборов, движение его в трубах сопровождается шумом.

Воздух + можно обеспечить быстрое изменение и равномерность температуры помещений, избежать установки отопительных приборов, совмещать отопление с вентиляцией помещений, достигать бесшумности его движения в воздуховодах и каналах.

- Недостатками являются его малаяаккумулирующая способность, значительная площадь поперечного сечения и расход металла на воздуховоды, относительно большое понижение температуры по их длине.

В суровых условиях российской зимы в некоторых случаях рекомендуется использовать специальный незамерзающий теплоноситель – антифриз. Антифризами являются водные растворы этиленгликоля, пропиленгликоля и других гликолей, а также растворы некоторых неорганических солей.

Любой антифриз является достаточно токсичным веществом. Его использование в системе отопления может привести к некоторым негативным последствиям (ускорение коррозийных процессов, снижение теплообмена, изменение гидравлических характеристик, завоздушивание и др.) Применение антифриза должно быть достаточно обоснованным.

Антифриз

Преимуществом антифриза в качестве теплоносителя для системы отопления по сравнению с водой является следующее. Если в холодное время в доме никто не живет и система отопления отключена, то велика вероятность, что вода в промерзшем помещении может разорвать как трубы, так и сам котел. При использовании антифриза этого произойти не должно. Хочется предостеречь от применения автомобильного "тосола" в системах отопления, так как в его составе есть добавки не допустимые к применению в жилых помещениях. Поэтому если вы заботитесь о своем здоровье и "здоровье" своей системы отопления — используйте специальный антифриз для систем отопления. В большинстве случаев основу российских антифризов составляет этиленгликоль, в которой добавлены специальные присадки, придающие теплоносителю антикоррозийные и антивспенивающие свойства.

При применении антифриза следует иметь в виду следующее:

· теплоемкость антифриза примерно на 15-20 % ниже, чем у воды (т. е. он хуже накапливает тепло и хуже отдает его), следовательно, при проектировании системы отопления с антифризом радиаторы следует выбирать более мощные,

· вязкость антифриза выше, чем у воды, т. е. его сложнее заставить двигаться по системе отопления, поэтому нужно выбирать более мощные циркуляционные насосы,

· антифриз более текуч, чем вода, отсюда повышенные требования к разъемным соединениям системы отопления, с антифризом нельзя использовать оцинкованные трубы, т. к. это приводит к химическим изменениям и потере его изначальных свойств.

Обычно антифриз продается в двух модификациях: с температурой замерзания не выше минус 65 °С и температурой замерзания не выше минус 30 °С. При этом концентрированный вариант (рассчитанный на минус 65 °С) может быть разбавлен водой до требуемой вам концентрации. Для получения теплоносителя с температурой замерзания минус 30 °С к двум частям антифриза надо добавить одну часть воды, для минус 20 °С — надо смешать антифриз пополам с водой. Со второй половины 90-х годов прошлого века в ведущих странах Западной Европы и США стали появляться нетоксичные пропиленгликолевые антифризы. Плюс этого продукта — экологическая безвредность. Данное свойство очень важно при использовании антифриза в двухконтурных системах отопления, когда есть вероятность попадания антифриза из контура отопления в контур горячего водоснабжения. Совсем недавно и российские производители начали выпуск антифризов, полученных на основе экологически чистого сырья — пищевого пропиленгликоля.

Отопительные приборы.

Требования предъявляемые к отопительным приборам.

Отопительные приборы – один из основных элементов систем отопления, предназначенный для теплопередачи от теплоносителя в обогреваемые помещения.

Тепловой нагрузкой отопительного прибора называется суммарная теплоотдача в помещение, необходимая для поддержания заданной температуры.

Требования предъявляемые к отопительным приборам:

санитарно-гигиенические. Относительно пониженная температура поверхности, ограничение площади горизонтальной поверхности приборов для уменьшения отложения пыли, доступность и удобство очисти от пыли поверхности приборов и пространства вокруг них.

Экономические. Относительно пониженная стоимость прибора, экономный расход металла на прибор, обеспечивающий повышение теплового напряжения металла.

Архитектурно-строительные. Соответствие внешнего вида отопительных приборов интерьеру помещений, сокращение площади помещений, занимаемой приборами, Приборы должны быть достаточно компактными, т.е. их строительная глубина и длина, приходящаяся на единицу теплового потока, должна быть наименьшими.

Производственно-монтажные, Механизация изготовления и монтажа приборов для повышения производительности труда. Достаточная механическая прочность приборов.

Эксплуатационные. Управляемость теплоотдачи приборов, зависящая от их тепловой инерции. Температурная устойчивость и водонепроницаемость стенок при предельно допустимом в рабочих условиях (РАБОЧЕМ) гидростатическом давлении внутри приборов.

Теплотехническое. Обеспечение наибольшего теплового потока от теплоносителя в помещение через единицу площади прибора при прочих равных условиях (расход и температура теплоносителя, температура воздуха, место установки).

По высоте:

Высокие высотой более 650 мм

Средние от 400 до 650 мм

Низкие от 200 до 400 мм

Приборы высотой 200 мм и менее называют плинтусными.

По глубине:

Малой глубины до 120мм

Средней глубины от120 до 400 мм

Большой глубины более 400 мм

По величине тепловой инерции: Малой тепловой инерции относят приборы имеющие небольшую массу материала и вмещаемой воды (конвекторы) Большой тепловой инерции массивные приборы, вмещающие значительное количество воды

Отопительные приборы Отопительные приборы выбираются, как и котел, по тепловой мощности. Здесь действует все та же формула — 1 кВт примерно (!) на 10 м2 хорошо утепленного помещения с высотой потолка до 3 м. Кроме того, важным параметром (в основном при применении в городских квартирах) является давление на которое отопительный прибор рассчитан. Если учесть, что это один из немногих элементов системы отопления, который вы всегда будете видеть в своем интерьере, в отличие от котла, насоса и др., то немаловажен и его дизайн.

Какие же бывают отопительные приборы.

· Традиционные радиаторы (имеют относительно большой объем и, соответственно, содержат много горячего теплоносителя и весьма инерционны). За счет этого, они отдают тепло, главным образом, в виде излучения

· Конвекторы (отдают тепло преимущественно за счет циркуляции воздуха через них). Внутри конвектора расположена труба, по которой движется теплоноситель, нагревая разветвленную поверхность "гармошки" надетой на трубу. Воздух проходит сквозь конвектор снизу вверх, нагреваясь от многочисленных теплых оребрений.

· Панельные радиаторы (комбинированные отопительные приборы, сочетающие в себе свойства радиаторов и конвекторов).

Теперь несколько слов о материалах, из которых изготовлены отопительные приборы, их плюсах и минусах. Скорее всего, чугунные радиаторы, которые установлены в большинстве старых российских домов, вам достаточно хорошо известны. Их основные плюсы — хорошо отдают тепло и сопротивляются ржавчине, выдерживают достаточно высокое давление. Минусы чугунных радиаторов — трудоемкость монтажа, не самый привлекательный внешний вид и большая тепловая инерция. Традиционный плюс отечественных чугунных радиаторов — низкая цена. Но надо иметь в виду, что часто это достоинство может быть практически сведено к нулю более высокой стоимостью их монтажа. Нередко, в случае, если вы захотите сделать систему отопления из отечественных чугунных радиаторов и дешевых стальных труб, то стоимость монтажа будет примерно на 30-40 % выше, чем установка легких, чистых и удобных в монтаже пластиковых труб и стальных или алюминиевых радиаторов.

Алюминиевые радиаторы имеют очень хорошую теплоотдачу, низкую массу и привлекательный дизайн, выдерживают достаточно высокое давление. Минус — дорогие. Кроме того, алюминиевые радиаторы подвержены коррозии. Коррозия усиливается при образовании в системе отопления гальванических пар алюминия с другими металлами. В случае использования алюминиевых радиаторов желательно проведение противокоррозионных мероприятий, что вполне реально осуществить в частном доме. Стоит упомянуть и повышенную тепловую инерцию, присущую этому типу радиаторов. Биметаллические радиаторы (имеющие алюминиевый корпус и стальную трубу, по которой движется теплоноситель) сочетают в себе все плюсы алюминиевых радиаторов — высокая теплоотдача, низкая масса, хороший внешний вид и, кроме того, при определенных условиях имеют более высокую коррозийную стойкость и обычно рассчитаны на большее давление в системе отопления. Опять же, их основной минус — высокая цена. Использование таких радиаторов для частного загородного дома, как правило, не оправдано, так как высокого давления в этом случае быть не должно и нет смысла платить за это дополнительные деньги.

Стальные трубчатые радиаторы — обычно наиболее дорогой тип радиаторов (в пересчете на 1 кВт). На российском рынке предлагается достаточно большое количество трубчатых радиаторов разных форм и расцветок. Эти радиаторы нередко используются не просто как элемент системы отопления, но и как элемент дизайна помещения. Разновидностью трубчатых радиаторов являются радиаторы для ванной комнаты. Такие радиаторы могут подсоединяться в систему отопления или, кроме этого, оснащаться дополнительным электрическим нагревательным элементом. Стальные панельные радиаторы — наиболее часто используются для установки в коттеджах. Они не рассчитаны на очень высокое давление, но это и не нужно, так как в загородном доме высокого давления в системе быть не должно. При этом они имеют хорошее соотношение цены и качества, высокую теплоотдачу. Стальные панельные радиаторы обладают относительно небольшой тепловой инерцией, а значит, с их помощью легче осуществлять автоматическое регулирование температуры в помещении.

Бывает два типа панельных радиаторов — с нижним и боковым подключением. В радиаторы с нижнем подключением встроен термостатический вентиль, на который можно установить терморегулятор, для поддержания заданной температуры в помещении. Как следствие, стоимость радиаторов с нижним подключением выше, чем аналогов с боковым подключением. Отопительные приборы, независимо от их типа и материала, предпочтительнее располагать под окном. Это делается для того, чтобы поднимающийся от них теплый воздух блокировал движение холодного воздуха от окна. Если у вас или вашего дизайнера возникает желание закрыть отопительный прибор декоративной панелью или решеткой, то следует помнить, что при этом теряется большое количество тепла, то есть вы рискуете остаться в "недогретом" помещении и потратить больше денег на топливо.

Радиаторы.

Элементы системы отопления.

Верхняя разводка

В данной схеме теплоноситель нагревается в котле и за счет своей плотности поднимается по стояку в расширительный бачок отопления.

Внимание! Эта схема предусматривает нахождение расширительного бачка в самой верхней точке системы отопления.

Далее, по трубопроводу (который должен идти под небольшим уклоном) теплоноситель поступает в горячие стояки. Эти стояки тянутся от самого верхнего этажа дома к первому и проходят по всей высоте здания. Отработанный теплоноситель, в свою очередь, попросту, вытесняется горячей водой и по «обратке» возвращается к котлу отопления по трубам. Для регулировки уровня подачи горячей воды на выходе в радиаторы устанавливаются специальные запорные вентили.

Нижняя разводка

Система с нижней разводкой имеет основной (подающий) трубопровод, обеспечивающий теплоносителем все остальные стояки ниже уровня жилых помещений. Что касается обратных стояков, то они присоединены к общей «обратке», проведенной еще ниже.

Обратите внимание! Данная схема содержит в своей структуре воздушную линию, расположенную сверху.

С ее помощью автоматически удаляется весь накопленный воздух в радиаторах, который в свою очередь выводится через расширительный бак.

 

Двухтрубные системы

В любой двухтрубной схеме, как при верхней, так и при нижней разводке, нагретая вода поднимается вверх и по трубопроводу поступает в радиаторы, где со временем охлаждается и становится тяжелее. По обратным стоякам остывший теплоноситель стекает в обратный трубопровод и возвращается в котел. Холодная вода имеет большую плотность и массу чем горячая и таким образом сама ее вытесняет в трубопровод, создавая естественную циркуляцию даже без насоса.

Однотрубные системы

По своей сути, это самая простая схема, которую под силу изготовить и смонтировать своими руками даже неопытному человеку. Она отличается от двухтрубной тем, что отдав свое тепло на верхнем этаже, на нижний переносится уже меньше. Получается, что теплоноситель преодолевая этаж за этажом постепенно охлаждается и выходит, что жители первого этажа получают тепла меньше всего. Для того чтобы жители нижних этажей попросту не замерзли, инженеры добавили дополнительные секции к батареям отопления для жителей нижних этажей.

Также, проблему можно решить частично, установив на каждый радиатор специальные перемычки. С перемычками часть горячей воды переходит на этаж ниже без охлаждения.

Следует отметить и тот факт, что главный стояк в однотрубной системе необходимо максимально надежно защитить от теплопотерь. В противном случае система потеряет не только тепло, но и мощность напора воды, что негативно скажется на отоплении дома в целом.

Что касается обратной линии, то ее наоборот – изолировать нельзя ни в коем случае! Это связано с тем, что более холодная вода имеет больший вес и соответственно, вытесняя горячую воду, создает более сильный напор.

Способы циркуляции

Принудительная и естественная циркуляция

 

Естественная циркуляция не поддается автоматическому регулированию;

· Для ее обустройства необходимы трубы с большим диаметром, цена на которые заметно выше;

· Не очень эстетично смотрятся в интерьере;

· Отрегулировать данную систему можно только своими руками – в котле вы сможете лишь увеличить пламя, когда холодно, или наоборот уменьшить, когда стало жарко.

· Если вы проживаете в регионах, где неожиданное выключение электричества в порядке вещей, то данные системы идеально вам подойдут.

В данной схеме не предусмотрено никаких дополнительных (электрических) приборов и устройств:

· Приборы группы безопасности;

· Перепускные клапаны;

· Электрические температурные датчики;

· Регуляторы топлива и пр.

· Большое количество потребляемого топлива на отопительный сезон.

Что касается плюсов, то по своей сути это самая надежная схема, которая может прослужить без ремонта до 40 лет! Она крайне надежна и не зависит ни от каких-либо перепадов напряжения. Вообще, кроме котла, в ней ломаться в принципе нечему.

 

Двухтрубный вариант отопительной системы

 

Принудительная же циркуляция удобна и комфортна для жителей тех регионов, которые не страдают от скачков напряжения. В данном случае, система регулируется как в ручную, так и автоматически – для каждой комнаты вы сможете задать персональную температуру, исключительно под свои нужды.

Но в автоматических системах есть свои минусы – далеко не каждый местный монтажник сможет смонтировать сложную схему со всеми необходимыми вам датчиками и сложными узлами соединений, а нанимать иногороднего специалиста достаточно накладно.

Также, по своей сути эта система очень нежна и долго не проработает в том доме, где имеют место перебои с электропитанием.

 

Элементы и понятия

Ввод отопления — участок трубопровода между ближайшим тепловым колодцем (читай — отводом от теплотрассы) и входной запорной арматурой домовой системы отопления;

Обычно граница раздела зон ответственности между Теплосетями и жилищниками проходит по первому фланцу входной задвижки.

Водоструйный элеватор — сердце элеваторного узла, стальной или чугунный тройник с соплом, обеспечивающим смешивание воды из подающей и обратной ниток теплотрассы. Элеватор позволяет направить часть отработанного теплоносителя на рециркуляцию. Он обеспечивает высокую скорость теплоносителя (и, стало быть, минимальный перепад температур между концами контура) при минимальном расходе воды с подачи;

Устройство и принцип работы водоструйного элеватора

Элеваторный узел — обвязка элеватора, комплекс запорно-регулирующей арматуры, обеспечивающей работу отопительной системы;

Устройство простейшего элеваторного узла.

Многоквартирный дом может иметь несколько элеваторных узлов. Как правило, один из них отвечает за отопление и подачу в дом горячей воды. Остальные — только за отопление.

Элеваторный узел с врезками горячего водоснабжения.

Розлив (он же — отопительная лежневка, или лежак) — горизонтальный трубопровод, соединяющий между собой отопительные приборы или стояки (вертикальные трубопроводы) с отопительными приборами;

Розливы подачи и обратки в подвале многоквартирного дома.

Подводка — участок трубопровода, соединяющий отопительные приборы с розливом (розливами) или стояком (стояками);

Стальные подводки к радиатору.

Отопительный котел — источник тепла в автономной (не подключенной к теплотрассе) системе. Котлами оснащаются и системы отопления частного дома, и отдельные квартиры в многоквартирных домах новой постройки;

Справа — напольный газовый котел.

Расширительный бак — емкость, вмещающая избыток теплоносителя при его тепловом расширении. Бак может быть открытым (в системе, работающей при атмосферном давлении) и мембранным (в закрытой системе с избыточным давлением).

Расширительный бак для открытой системы.

 

В замкнутой системе, бачок — это емкость с эластичной перегородкой, часть объема которой заполнена воздухом с небольшим избыточным давлением;

Объем мембранного расширительного бака должен быть приблизительно равен 1/10 от объема теплоносителя. В сбалансированной отопительной системе этот объем рассчитывается как 15 л на 1 КВт мощности котла.

Устройство мембранного бака.

Воздушник — устройство для отвода воздуха из системы отопления. Воздушники монтируются в верхней точке закрытого контура и на всех скобах, поднимающихся выше уровня розлива. В их роли могут выступать краны Маевского, автоматические воздухоотводчики или обычные краны;

На фото — кран Маевского под плоскую отвертку.

Предохранительный клапан — приспособление для сброса избытка теплоносителя при опасно высоком давлении;

Обычно автоматический воздушник, клапан и манометр (он нужен для зрительного контроля давления) объединяются и формируют группу безопасности, которая монтируется на отводе от розлива после котла.

Группа безопасности котла.

Гидравлический напор — высота водяного столба, соответствующая перепаду давлений на участке отопительного контура. Одна атмосфера (1 бар, 1 кгс/см2) соответствуют напору в 10 метров.

Элеваторный узел многоквартирного здания работает с гидравлическим напором (перепадом давлений между смесью после элеватора и обраткой всего в 2 метра, или 0,2 кгс/см2).

 

Для ЦО типичны давления на входе в элеваторный узел в 5 — 7 кгс/см2 на подаче и 3 — 4 кгс/см2 на обратном трубопроводе. Температура теплоносителя варьируется в зависимости от уличной температуры.

В большинстве случаев используется температурный график 150/70: в пик холодов температура подачи поднимается до 150С, а обратки — до 70С.

Температурный график 150/70.

Температура смеси (воды после смешения подачи и обратки в элеваторе, поступающей в батареи) ограничена 95 градусами в жилых и производственных зданиях и 37 градусами в детских дошкольных заведениях.

При ряде форс-мажорных обстоятельств штатные параметры давления и температуры могут быть заметно превышены.

Вот примеры таких сценариев:

Если быстро заполнить пустой контур или резко остановить циркуляцию в нем, на фронте потока образуется область повышенного давления. При гидроударе его значения могут достигать 25 — 30 атмосфер;

Последствия предсказать нетрудно.

После окончания отопительного сезона проводятся испытания теплотрасс «на плотность». В ходе испытаний давление в них повышается до 12 и более атмосфер. Входные задвижки элеваторного узла при этом должны быть перекрыты, но человеческий фактор или неисправность запорной арматуры вполне могут привести к тому, что испытываться будет не только трасса;

В экстремально сильные заморозки и при большом количестве жалоб на холод в квартирах в северных регионах практикуется работа элеватора без сопла. Подсос при этом глушится стальным блином, и вода поступает в отопительный контур прямо из подающей нитки трассы. А ее температура в пик холодов, как мы помним, может достигать 150С.

Вода с подачи теплотрассы напрямую попадает в отопительный контур.

В системе автономного отопления типично давление в 1,5-2,5 кгс/см2 при температуре 70-75С на подаче и 50-55С на обратке. Эти параметры при правильном расчете отопительной системы стабильны и не зависят от внешних факторов.

 

Пример, как отрегулировать отопление в одноэтажном доме

Характерный пример – не удалось сделать два плеча тупиковой схемы, так как прокладке труб мешала дверь, сделали одно плечо и насадили на него «аж» 7 радиаторов.

В результате температура последнего в плече на 9 градусов меньше чем ближайшего к котлу. Можно сделать такие действия – на последних 3 радиаторах краны полностью оставить открытые. На первом балансировочный кран открыть из положения полного закрытия на 1,5 оборота, на втором – на 2 оборота, на 3 и 4 на 2,5 оборота.

Подразумевается, что всего балансировочный клапан регулируется в 4,5 оборота, а длина трубопроводов в пределах небольшого дома. Но регуляторы бывают разной конструкции, длины разные, поэтому в каждом случае – свое количество оборотов.

После балансировки нужно выждать минут 20 затем снова измерять температуру входящего патрубка радиатора, возможно придется дополнительно что-то регулировать на четверть оборота…

 

 

 

Принципы регулировки

1. Создавать значительные закрытия нельзя.

2. Основной принцип балансировки – максимально открыть путь для движения теплоносителя. Закрытие – это вынужденная мера.

3. Поэтому добиться в данном примере одинаковой температуры не стоит.

4. Правильно согласиться с тем, что первый будет горячее на 3 – 4 градуса при температуре теплоносителя в 80 градусов и на пару градусов при низкотемпературном обогреве 50 градусов.

Пирометр.

А чем мерить-то? Профессионалы посмотрели бы на каждый радиатор через тепловизор и сделали теплофото. Но можно обойтись и контактными термометрами – специальные приборы для монтажников-отопителей. Но в быту чаще меряют просто рукой и судят по ощущениям. Чувствительная в этом отношении мочка уха – но стоит ли ухом тереть по радиаторам…

 

Пример для двухэтажного дома

Еще характерный пример, когда проектировщики-монтажники сумели так сделать систему отопления, что установили и на первом и на втором этажах примерно равную мощность радиаторов (площади примерно равны), причем балансировку этажей относительно друг друга впаять забыли.

В результате на первом этаже все еще холодно, а на втором этаже уже жара.

Опять выручат балансировки установленные непосредственно на радиаторах. На втором этаже просто отрываем краны на 2 оборота вместо полных 4,5, уменьшив, таким образом ток жидкости процентов на 30. Снизив энергоотдачу, выравниваем температурный режим, при необходимости закрываем больше…

Дополнительная информация – какие схемы разводки отопительного трубопровода применяются

Схема, на которой отсутствует возможность балансировки между двумя плечами — типичная ошибка в самодельных системах.

Наладка по проекту

При обычном грамотном монтаже современной системы отопления балансировка не нужна вовсе, схема делается так, что все радиаторы греют оптимально. К тому же зачастую их автоматизируют термоголовками, с помощью которых можно задать температуру в отдельной комнате.

Небольшую сумятицу в вопросы наладки отопления вносят проектировщики и проектные данные. В проекте закладывается количество проходящего теплоносителя и балансировка каждого радиатора – насколько оборотов должен быть повернут каждый балансировочный кран опр



Поделиться:


Последнее изменение этой страницы: 2020-12-09; просмотров: 229; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.118.171.20 (0.144 с.)