Тема: «технические характеристики современных компьютеров». 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Тема: «технические характеристики современных компьютеров».



ЛЕКЦИЯ №5

ТЕМА: «ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ СОВРЕМЕННЫХ КОМПЬЮТЕРОВ».

План

Важнейшие этапы истории вычислительной техники.

Устройство и принцип действия ЭВМ.

Технические характеристики современных компьютеров.

Механический этап развития вычислительной техники.

Развитие механики в 17 в. стало предпосылкой создания вычислительных устройств и приборов, использующих механический принцип вычислений. Такие устройства строились на механических элементах и обеспечивали автоматический перенос старшего разряда. Первая механическая машина была описана в 1623 г. В. Шиккардом, реализована в единственном экземпляре и предназначалась для выполнения четырех арифметических операций над 6-разрядными числами Машина Шиккарда состояла из трех независимых устройств: суммирующего, множительного и записи чисел Сложение производилось последовательным вводом слагаемых посредством наборных дисков, а вычитание - последовательным вводом уменьшаемого и вычитаемого. Вводимые числа и результат сложения / вычитания отображались в окошках считывания. Для выполнения операции умножения использовалась идея умножения решеткой, рассмотренная выше. Третья часть машины использовалась для записи числа длиною более 6 разрядов.

В машине Б. Паскаля использовалась более сложная схема переноса старших разрядов, в дальнейшем редко используемая; но построенная в 1642 г. первая действующая модель машины, а затем серия из 50 машин способствовали достаточно широкой известности изобретения и формированию общественного мнения о возможности автоматизации умственного труда. До нашего времени дошло только 8 машин Паскаля, из которых одна является 10-разрядной. Именно машина Паскаля положила начало механического этапа развития вычислительной техники. В 17-18 веках предлагался целый ряд различного типа и конструкции суммирующих устройств и арифмометров, пока в 19 в; растущий объем вычислительных работ не определил устойчивого спроса на механические счетные устройства и не способствовал их серийному производству на коммерческой основе.

Для функционирования аналитической машины была необходима программа, первый пример которой был написан Адой Лавлейс (1843 г.). В 1842 г. на итальянском языке была опубликована статья Л.Ф. Менабреа по аналитической машине Бэбиджа, переводом которой на английский язык и занялась А. Лавлейс. В августе 1843 г. вышел перевод статьи Менебреа, но с примечаниями переводчика, которые не только в 2.5 раза превзошли по объему оригинал, но и, по сути дела, заложили основы программирования на ЭВМ за столетие до начала действительного развитая этого базового раздела информатики.

Этапы истории в датах.

Первым устройством, предназначенным для облегчения счета, были счеты. С помощью костяшек счетов можно было совершать операции сложения и вычитания и несложные умножения.

1642 г. — французский математик Блез Паскаль сконструировал первую механическую счетную машину «Паскалина», которая могла механически выполнять сложение чисел.

1673 г. — Готфрид Вильгельм Лейбниц сконструировал арифмометр, позволяющий механически выполнять четыре арифметических действия.

Первая половина XIX в. — английский математик Чарльз Бэббидж попытался построить универсальное вычислительное устройство, то есть компьютер. Бэббидж называл его аналитической машиной. Он определил, что компьютер должен содержать память и управляться с помощью программы. Компьютер по Бэббиджу — это механическое устройство, программы для которого задаются посредством перфокарт — карт из плотной бумаги с информацией, наносимой с помощью отверстий (они в то время уже широко употреблялись в ткацких станках).

1941 г. — немецкий инженер Конрад Цузе построил небольшой компьютер на основе нескольких электромеханических реле.

1943 г. — в США на одном из предприятий фирмы IBM Говард Эйкен создал компьютер под названием «Марк-1». Он позволял проводить вычисления в сотни раз быстрее, чем вручную (с помощью арифмометра), и использовался для военных расчетов. В нем использовалось сочетание электрических сигналов и механических приводов. «Марк-1» имел размеры: 15 * 2—5 м и содержал 750 000 деталей. Машина была способна перемножить два 32-разрядных числа за 4 с.

1943 г. — в США группа специалистов под руководством Джона Мочли и Проспера Экерта начала конструировать компьютер ENIAC на основе электронных ламп.

1945 г. — к работе над ENIAC был привлечен математик Джон фон Нейман, который подготовил доклад об этом компьютере. В своем докладе фон Нейман сформулировал общие принципы функционирования компьютеров, т. е. универсальных вычислительных устройств. До сих пор подавляющее большинство компьютеров сделано в соответствии с теми принципами, которые изложил Джон фон Нейман.

1947 г. — Экертом и Мочли начата разработка первой электронной серийной машины UNIVAC (Universal Automatic Computer). Первый образец машины (UNIVAC-1) был построен для бюро переписи США и пущен в эксплуатацию весной 1951 г. Синхронная, последовательного действия вычислительная машина UNIVAC-1 была создана на базе ЭВМ ENIAC и EDVAC. Работала она с тактовой частотой 2,25 МГц и содержала около 5000 электронных ламп. Внутреннее запоминающее устройство емкостью 1000 12-разрядных десятичных чисел было выполнено на 100 ртутных линиях задержки.

1949 г. — английским исследователем Морнсом Уилксом построен первый компьютер, в котором были воплощены принципы фон Неймана.

1951 г. — Дж. Форрестер опубликовал статью о применении магнитных сердечников для хранения цифровой информации, В машине «Whirlwind-1» впервые была применена память на магнитных сердечниках. Она представляла собой 2 куба с 32-32-17 сердечниками, которые обеспечивали хранение 2048 слов для 16-разрядных двоичных чисел с одним разрядом контроля на четность.

1952 г. — фирма IBM выпустила свой первый промышленный электронный компьютер IBM 701, который представлял собой синхронную ЭВМ параллельного действия, содержащую 4000 электронных ламп и 12 000 диодов. Усовершенствованный вариант машины IBM 704 отличался высокой скоростью работы, в нем использовались индексные регистры и данные представлялись в форме с плавающей запятой.

После ЭВМ IBM 704 была выпущена машина IBM 709, которая в архитектурном плане приближалась к машинам второго и третьего поколений. В этой машине впервые была применена косвенная адресация и впервые появились каналы ввода — вывода.

1952 г. — фирма Remington Rand выпустила ЭВМ UNIVAC-t 103, в которой впервые были применены программные прерывания. Сотрудники фирмы Remington Rand использовали алгебраическую форму записи алгоритмов под названием «Short Code» (первый интерпретатор, созданный в 1949 г. Джоном Мочли).

1956 г. — фирмой IBM были разработаны плавающие магнитные головки на воздушной подушке. Изобретение их позволило создать новый тип памяти — дисковые запоминающие устройства (ЗУ), значимость которых была в полной мере оценена в последующие десятилетия развития вычислительной техники. Первые ЗУ на дисках появились в машинах IBM 305 и RAMAC. Последняя имела пакет, состоявший из 50 металлических дисков с магнитным покрытием, которые вращались со скоростью 12000 об. /мин. На поверхности диска размещалось 100 дорожек для записи данных, по 10 000 знаков каждая.

1956 г. — фирма Ferranti выпустила ЭВМ «Pegasus», в которой впервые нашла воплощение концепция регистров общего назначения (РОН). С появлением РОН устранено различие между индексными регистрами и аккумуляторами, и в распоряжении программиста оказался не один, а несколько регистров-аккумуляторов.

1957 г. — группа под руководством Д. Бэкуса завершила работу над первым языком программирования высокого уровня, получившим название ФОРТРАН. Язык, реализованный впервые на ЭВМ IBM 704, способствовал расширению сферы применения компьютеров.

1960-е гг. — 2-е поколение ЭВМ, логические элементы ЭВМ реализовываются на базе полупроводниковых приборов-транзисторов, развиваются алгоритмические языки программирования, такие как Алгол, Паскаль и другие.

1970-е гг. — 3-е поколение ЭВМ, интегральные микросхемы, содержащие на одной полупроводниковой пластине тысячи транзисторов. Начали создаваться ОС, языки структурного программирования.

1974 г. — несколько фирм объявили о создании на основе микропроцессора Intel-8008 персонального компьютера — устройства, выполняющего те же функции, что и большой компьютер, но рассчитанного на одного пользователя.

1975 г. — появился первый коммерчески распространяемый персональный компьютер Альтаир-8800 на основе микропроцессора Intel-8080. Этот компьютер имел оперативную память всего 256 байт, клавиатура и экран отсутствовали.

Конец 1975 г. — Пол Аллен и Билл Гейтс (будущие основатели фирмы Microsoft) создали для компьютера «Альтаир» интерпретатор языка Basic, позволивший пользователям просто общаться с компьютером и легко писать для него программы.

Август 1981 г. — компания IBM представила персональный компьютер IBM PC. В качестве основного микропроцессора компьютера использовался 16-разрядный микропроцессор Intel-8088, который позволял работать с 1 мегабайтом памяти.

1980-е гг. — 4-е поколение ЭВМ, построенное на больших интегральных схемах. Микропроцессоры реализовываются в виде единой микросхемы, Массовое производство персональных компьютеров.

1990-е гг. — 5-е поколение ЭВМ, сверхбольшие интегральные схемы. Процессоры содержат миллионы транзисторов. Появление глобальных компьютерных сетей массового пользования.

2000-е гг. — 6-е поколение ЭВМ. Интеграция ЭВМ и бытовой техники, встраиваемые компьютеры, развитие сетевых вычислений.

Центральный процессор ЭВМ

Центральный процессор (ЦП) - программно-управляемое устройство обработки информации, предназначенное для управления работой всех блоков машины и выполнения арифметических и логических операций. Функции процессора: чтение команд из ОЗУ; декодирование команд, то есть определение их назначения, способа выполнения и адресов операндов; исполнение команд; управление пересылкой информации между МПП, ОЗУ и периферийными устройствами; обработка прерываний; управление устройствами, составляющими ЭВМ. Центральный процессор состоит из устройства управления, арифметико-логического устройства, микропроцессорной памяти, интерфейсной системы.

Арифметико-логическое устройство (АЛУ) - это устройство, которое выполняет арифметические действия и логические операции над данными.

Устройство управления (УУ) координирует работу всех блоков компьютера. В определенной последовательности он выбирает из оперативной памяти команду за командой. Каждая команда декодируется, по потребности элементы данных из указанных в команде ячеек оперативной памяти передаются в АЛУ; АЛУ настраивается на выполнение действия, указанной текущей командой (в этом действии могут принимать участие также устройства ввода-вывода); дается команда на выполнение этого действия. Этот процесс будет продолжаться до тех пор, пока не возникнет одна из следующих ситуаций: исчерпаны входные данные, от одного из устройств поступила команда на прекращение работы, выключено питание компьютера.

Микропроцессорная память (МПП) - память небольшой емкости, но чрезвычайно высокого быстродействия (время обращения к МПП примерно 1 нс). Данная память выступает в роли "черновика" для вычислений процессора.

Внутренняя память.

Оперативное запоминающее устройство (ОЗУ) предназначено для хранения информации (программ и данных), непосредственно участвующей в работе ЭВМ в текущий или в последующие моменты времени. ОЗУ - энергозависимая память, то есть при отключении питания записанная в нем информация теряется. ОЗУ состоит из больших интегральных схем (БИС), содержащие матрицу ячеек памяти, состоящих из триггеров - полупроводниковых запоминающих элементов, которые способны находиться в двух устойчивых состояниях, соответствующих логическим нулю и единице.

Внутренняя память дискретна, ее информационная структура представляет собой матрицу двоичных ячеек, в каждой из которых хранится по 1 биту информации. Она адресуема: каждый байт (8 ячеек по 1 биту) имеет свой адрес - порядковый номер. Доступ к байтам ОЗУ происходит по адресам. Так как ОЗУ позволяет обратиться к произвольному байту, то эта память называется памятью произвольного доступа (англ. Random Access Memory - RAM).

Постоянное запоминающее устройство (ПЗУ, англ. ROM - Read-Only Memory) - энергонезависимая память, используется для хранения массива неизменяемых данных. В частности, в ПЗУ компьютера записана базовая система ввода-вывода (BIOS), отвечающая за самые базовые функции интерфейса и настройки оборудования, на котором она установлена.

Полупостоянная запоминающее устройство (ППЗУ, англ. CMOS - Complementary Metal Oxide Semiconductor) - энергонезависимая память, содержимое которой можно изменить. В ППЗУ хранятся параметры BIOS.

Внешняя память.

Носитель информации - материальный объект, используемый для хранения информации. Различают бумажные носители (перфокарты, перфоленты), магнитные носители (ленты, диски, барабаны), оптические носители (CD и DVD) и полупроводниковые носители (Flash-память).

Накопитель - механическое устройство, управляющее записью, хранением и считыванием данных. Различают накопители на гибких магнитных дисках (ГМД) и накопители на жестких магнитных дисках (ЖМД), накопители на оптических и магнитооптических дисках (ОД), а так же флеш-карты (флешки).

Накопитель на жестком магнитном диске (ЖМД) состоит из нескольких магнитных дисков МД, насаженных на один вал двигателя, вблизи которых расположены магнитные головки, связанные с механическим приводом. Информацию на МД записывается и считывается магнитными головками вдоль концентрических окружностей - дорожек (треков). Цилиндр - совокупность дорожек МД, равноудаленных от его центра. Каждая дорожка МД разбита на секторы - области емкостью 512 байт, определяемые идентификационными метками и номером. Сектор - минимальный объем данных, с которым могут работать программы в обход ОС.

Устройства ввода-вывода.

компьютер процессор информация

Процесс взаимодействия пользователя с компьютером (ЭВМ) непременно включает процедуры ввода входных данных и получение результатов обработки этих данных. Поэтому, обязательными составляющими типичной конфигурации ЭВМ являются разнообразные устройства ввода-вывода. Каждое такое устройство подключено через свой контроллер. К стандартным устройствам ввода-вывода относятся монитор, клавиатура, манипулятор (мышь) и принтер.

Монитор (дисплей) - это стандартное устройство вывода, предназначенное для визуального отображения текстовых и графических данных. В зависимости от принципа действия, мониторы делятся на:

- мониторы с электронно-лучевой трубкой;

- дисплеи на жидких кристаллах.

Работой монитора руководит специальная плата - контроллер, которую называют видеоадаптером (видеокартой). Вместе с монитором видеокарта создает видеоподсистему персонального компьютера. В первых компьютерах видеокарты не было. В оперативной памяти существовал участок памяти, куда процессор заносил данные об изображении.

С увеличением разрешающей способности экрана, участка видеопамяти стало недостаточно для хранения графических данных, а процессор не успевал обрабатывать изображения. Все операции, связанные с управлением экрана были отведены в отдельный блок - видеоадаптер.

Клавиатура - это стандартное клавишное устройство ввода, предназначенное для ввода алфавитно-цифровых данных и команд управления. Комбинация монитора и клавиатуры обеспечивает простейший интерфейс пользователя: с помощью клавиатуры руководят компьютерной системой, а с помощью монитора получают результат.

Клавиатура относится к стандартным средствам ЭВМ, поэтому для реализации ее основных функций не требуется наличие специальных системных программ (драйверов). Необходимое программное обеспечение для работы с клавиатурой находится в микросхеме постоянной памяти в составе базовой системы ввода-вывода BIOS.

Мышка - это устройство управления манипуляторного типа. Перемещение мышки по поверхности синхронизировано с перемещением графического объекта, который называется курсор мышки, по экрану монитора.

Принтер - устройство печати цифровой информации на твёрдый носитель, обычно на бумагу. Принтеры бывают:

- струйные;

- лазерные;

- светодиодные;

- матричные;

- сублимационные (печать паром).

В последнее время принтеры всё чаще стали использоваться не только для печати на бумаге. Радиолюбители используют лазерные принтеры в «лазерно-утюжной» технологии изготовления плат, нанося маску для травления с помощью лазерного принтера.

Магистраль (шина)

Все функциональные узлы компьютера связаны между собой через системную магистраль, представляющую из себя более трёх десятков упорядоченных микропроводников, сформированных на печатной плате.

- шину данных;

- шину адреса;

- шину управления.

По шине данных данные передаются между различными устройствами. Например, считанные из оперативной памяти данные могут быть переданы процессору для обработки, а затем полученные данные могут быть отправлены обратно в оперативную память для хранения.

Каждое устройство или ячейка оперативной памяти имеет свой адрес. Адрес передается по адресной шине, причем сигналы по ней передаются в одном направлении от процессора к оперативной памяти и устройствам.

По шине управления передаются сигналы, определяющие характер обмена информацией по магистрали. Сигналы управления определяют какую операцию считывание или запись информации из памяти нужно производить, синхронизируют обмен информацией между устройствами и т.д.

Принципы работы.

В основу построения подавляющего большинства компьютеров положены следующие общие принципы, сформулированные в 1945 г. американским ученым венгерского происхождения Джоном фон Нейманом.

Принцип программного управления. Программа состоит из набора команд, выполняющихся процессором автоматически в определенной последовательности.

Выборка программы из памяти осуществляется с помощью счетчика команд. Этот регистр процессора последовательно увеличивает хранимый в нем адрес очередной команды на длину команды. А так как команды программы расположены в памяти друг за другом, то тем самым организуется выборка цепочки команд из последовательно расположенных ячеек памяти. Если же нужно после выполнения команды перейти не к следующей, а к какой-то другой, используются команды условного или безусловного перехода, которые заносят в счетчик команд номер ячейки памяти, содержащей следующую команду. Выборка команд из памяти прекращается после достижения и выполнения команды «стоп».

Таким образом, процессор исполняет программу автоматически, без вмешательства человека.

Принцип однородности памяти. Программы и данные хранятся в одной и той же памяти, поэтому компьютер не различает, что хранится в данной ячейке памяти - число, текст или команда. Над командами можно выполнять такие же действия, как и над данными.

Это открывает целый ряд возможностей. Например, программа в процессе своего выполнения также может подвергаться переработке, что позволяет задавать в самой программе правила получения некоторых ее частей (так в программе организуется выполнение циклов и подпрограмм).

Более того, команды одной программы могут быть получены как результаты исполнения другой программы. На этом принципе основаны методы трансляции - перевода текста программы с языка программирования высокого уровня на язык конкретной машины.

Принцип адресности. Структурно основная память состоит из перенумерованных ячеек. Процессору в произвольный момент времени доступна любая ячейка.

Отсюда следует возможность давать имена областям памяти так, чтобы к запомненным в них значениям можно было впоследствии обращаться или менять их в процессе выполнения программ с использованием присвоенных имен.

Компьютеры, построенные на перечисленных принципах, относятся к типу фон-неймановских. Но существуют компьютеры, принципиально отличающиеся от фон-неймановских. Для них, например, может не выполняться принцип программного управления, т. е. они могут работать без счетчика команд, указывающего текущую выполняемую команду программы. Для обращения к какой-либо переменной, хранящейся в памяти, этим компьютерам необязательно давать ей имя. Такие компьютеры называются не фон-неймановскими.

 

Рис. 1 - Магистрально-модульное устройство компьютера

Список использованной литературы

1. Акулов О.А., Медведев Н.В. Информатика: базовый курс. М.: Омега-Л, 2006.

2. Дорот В.А., Новиков Ф.Н. Толковый словарь современной компьютерной лексики. 2-е изд. СПб.: BHV, 2001.

3. Информатика: Учебник. Под ред. Макаровой Н.В. М.: Финансы и статистика, 2000.

4. Лесничая И.Г. Информатика и информационные технологии. Учебное пособие. М.: Издательство Эксмо, 2007

5. Попов В.Б. Основы компьютерных технологий. М.: Финансы и статистика, 2002.

ЛЕКЦИЯ №5

ТЕМА: «ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ СОВРЕМЕННЫХ КОМПЬЮТЕРОВ».

План



Поделиться:


Последнее изменение этой страницы: 2020-11-23; просмотров: 372; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.119.133.228 (0.058 с.)