Назначение, устройство и работа приборов. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Назначение, устройство и работа приборов.



Электрооборудование практически полностью оригинально. В приборах и узлах широко применяется электроника и специализированные интегральные схемы (регулятор напряжения, коммутатор системы зажигания, сигнальные реле). На автомобилях устанавливается малообслуживаемая или необслуживаемая аккумуляторная батарея, малогабаритный стартер с торцевым коллектором, электронная бесконтактная система зажигания, система встроенных датчиков с приборами, контролирующая работу важнейших систем автомобиля. Введен новый прибор эконометр, позволяющий подбирать наиболее экономичный режим движения. Помимо контрольных приборов, автомобили оснащены специальной системой диагностики.

Разъем для включения диагностического оборудования станций технического обслуживания размещен под капотом. Он соединен со всеми контрольными точками системы электрооборудования. Система диагностики позволяет обследовать техническое состояние генератора, регулятора напряжения, системы зажигания, аккумуляторной батареи и т. д. Электрический очиститель ветрового стекла имеет три режима работы два постоянных (но с разными скоростями движения щеток) и один прерывистый. На части выпускаемых автомобилей устанавливаются очистители фар. Для улучшения работы очистителей имеется смыватель стекол

Для освещения дороги в темное время суток устанавливаются две блокфары (правая и левая). Они состоят из прямоугольных фар с лампами головного и габаритного света, сблокированных с секцией бокового указателя поворота. Блокфары крепятся к передку автомобиля четырьмя шпильками8 и гайками с зубчатой кромкой, которые предохраняют их от самоотворачивания.

Ближний и дальний свет фар переключается левым рычагом подрулевого переключателя, если включен выключатель наружного освещения. Кроме того, в электрической схеме предусмотрена возможность световой сигнализации, т. е. кратковременного включения дальнего света фар при любом положении выключателя наружного освещения. В этом случае дальний свет фар включается оттягиванием на себя левого рычага подрулевого переключателя, а питание на контакты световой сигнализации в переключафар подается непосредственно от штекера "INT" выключателя зажигания, минуя выключатель наружного освещения.

 

Нити двух ламп головного света фар потребляют довольно значительный ток - 8-10 А. Поэтому, чтобы разгрузить контакты переключателя фар и увеличить его долговечность, фары включаются не напрямую переключателем, а через дополнительные реле типа 113.3747. Они обладают мощными контактами и установлены в монтажном блоке. Реле включает ближний свет в обеих фарах, а реле - дальний свет. В результате через контакты переключателя фар протекает только ток питания обмоток реле, не превышающий 0,2 А.

Рефлектор фары изготовлен из стали и имеет форму параболоида, ограниченного сверху и снизу горизонтальными плоскостями. Для создания зеркальной отражающей поверхности рефлектор внутри покрывается специальным термостойким паком, а затем на него в вакууме наносится тонкий слой алюминия. Такое покрытие отражает от 90% падающего на него света.

Рассеиватель фары выполнен из бесцветного силикатного стекла с высокой степенью прозрачности. На его внутренней поверхности отпрессована сложная система линз и призм, рассеивающих свет в горизонтальной плоскости и концентрирующих световой поток в необходимых направлениях.

Лампа головного света фары галогенная. Колба лампы изготовлена из кварцевого стекла и заполнена парами йода (галогена) и каким-либо инертным газом. Галогенные лампы обладают повышенной световой отдачей, что обеспечивается более высокой температурой нагрева нити и повышенным сроком службы из-за химического процесса, происходящего в лампе. Этот процесс заключается в следующем. При горении с нити накала испаряются частички вольфрама и осаждаются на стенках лампы. Пары йода соприкасаются с ними и при температуре около 600°С образуется йодистый вольфрам. Это соединение неустойчиво при высоких температурах и, попадая в зону раскаленной нити, разлагается на йод и вольфрам, который осаждается на нить, а йод перемещается к стенкам колбы. Таким образом, у включенной лампы происходит постоянный перенос вольфрама со стенок на нить. Поэтому стенки колбы остаются чистыми, нить медленнее утоньшается, и долговечность лампы увеличивается.

При замене галогенных ламп необходимо соблюдать осторожность и брать лампу перчатками или платком, чтобы не оставить жировых следов от пальцев на стекле лампы. Если же такие следы на лампе имеются, то удалить их спиртом. Жировые загрязнения приводят к потемнению стекла лампы, поскольку оно нагревается до высоких температур. В результате она перегревается и быстро выходит из строя.

В лампе находятся две вольфрамовые нити: одна (55 Вт) для ближнего света и другая (60 Вт) для дальнего. Нить дальнего света находится в фокусе рефлектора, и поэтому лучи дальнего света собираются в узкий пучок, направленный почти параллельно дороге и хорошо освещающий ее на максимальном расстоянии от автомобиля. Нить ближнего света выведена вперед из фокуса рефлектора и закрыта снизу специальным металлическим экраном. Это сделано с целью ограничить распространение ближнего света вверх.

Если направить пучок ближнего света на стенку, то пятно света будет иметь форму эллипса со срезанной верхней половиной. В левой части пятна верхняя граница освещенного участка будет проходить точно по горизонтальной оси эллипса, а правой части по линии, исходящей вверх из центра эллипса под углом 15° к его горизонтальной оси. Такая форма пучка света обеспечивает хорошее освещение дороги перед автомобилем (особенно ее правой стороны и обочины) и уменьшает возможность ослепления водителей встречного транспорта.

Направление пучка света фары в горизонтальной плоскости можно регулировать винтом, а в вертикальной плоскости - винтом При вращении винта перемещается вперед или назад левый край рефлектора, и он поворачивается относительно нижней опоры и шаровой головки верхнего держателя. При вращении винта рефлектор через рычаг поворачивается относительно нижней опоры и шаровой головки винта.

В зависимости от загрузки автомобиля изменяется угол наклона осей фар относительно дороги и, соответственно, отклоняется направление пучков света фар. Для корректировки направления пучка света в зависимости от нагрузки на часть автомобилей устанавливается ручной гидрокорректрр фар, которым можно с места водителя в небольших пределах корректировать направление пучка света фар в вертикальной плоскости. Если гидрокорректора на автомобиле нет, то вместо него в корпус фары вставляется заглушка.

Гидрокорректор фар состоит из передаточного механизма (или главного цилиндра), закрепленного гайкой на панели приборов, двух рабочих цилиндров, установленных на корпусах блокфар, и соединительных трубок. Цилиндры и трубки заполнены специальной жидкостью, не замерзающей при низких температурах. Конструкция гидрокорректора неразборная, и в случае повреждения он должен заменяться целиком, в сборе с цилиндрами и трубками.

При нагрузке автомобиля только одним водителем поршень приводного механизма до конца вдвинут в цилиндры корпуса, а штоки рабочих цилиндров максимально выдвинуты из корпусов. Если положить груз в багажник, то задняя часть автомобиля опустится, и пучок света фар приподнимается вверх. Чтобы вернуть его в прежнее положение, поворачивают рукоятку гидрокорректора до упора против часовой стрелки. При этом поршень выдвигается назад из цилиндров и отсасывает жидкость из трубок и рабочих цилиндров. Возвратными пружинами штоки рабочих цилиндров вдвигаются в корпуса, и рычаги фар поворачиваются пружинами против часовой стрелки. Верхняя часть рефлектора фар перемещается вперед, и пучок света фар приподнимается Очиститель ветрового стекла электрический двухще-точный с параллельным движением щеток. Он имеет два постоянных режима работы, но с разными скоростями движения щеток, и один режим с прерывистой работой. Очиститель состоит из моторедуктора (электродвигателя с редуктором), кривошипно-шатунного механизма и щеток с рычагами. Размеры деталей механизма подобраны так, что угол качания поводков составляет около 85°.

 

Рычаги соединяются с поводками бис кривошипом сферическими шарнирами, позволяющими механизму надежно работать при некоторой непараллельности осей поводков. В шарнирах находятся два полусферических металлокерамических вкладыша 8, пропитанных маслом, которым заполнено также пространство между вкладышами. Вкладыши изнутри разжимаются пружиной.

Электродвигатель моторедуктора постоянного тока трехщеточный двухполюсный с возбуждением от постоянных магнитов с двумя скоростями вращения. У него стальной штампованный корпус, внутри которого пружинными держателями, приклепанными к стенкам корпуса, закреплены два постоянных магнита, имеющие форму полуколец. Эти магниты вместе с корпусом образуют статор электродвигателя.

Якорь электродвигателя состоит из вала, сердечника и коллектора. В пазы сердечника, изолированные картоном, уложена обмотка якоря, выводы секций которой припаяны к медным пластинам коллектора. Вал якоря вращается в шариковом подшипнике и металлокерамической втулке. Наружная поверхность втулки сферическая, что позволяет ей поворачиваться в гнезде корпуса и самоустанавливаться по' оси вала якоря. Вокруг втулки помещено войлочное кольцо. Втулка и войлок пропитаны маслом. Подшипник также заполнен смазкой. Поэтому смазывать электродвигатель при техническом обслуживании не требуется.

Корпус электродвигателя закрывается крышкой, являющейся одновременно картером редуктора. Передаточное отношение редуктора составляет 74:1. Картер редуктора закрыт пластмассовой панелью и крышкой. В панели находятся контактные стойки, к которым припаиваются провода и крепится пружинная пластина с контактами выключателя, обеспечивающего остановку электродвигателя в тот момент, когда щетки находятся в нижнем положении. Под действием упругости пластина прижимается к верхней стойке. Когда выступ кулачка находится против пластины, он отжимает ее от верхней стойки и замыкает с нижней стойкой.

Для защиты электродвигателя от перегрузок при примерзании щеток к стеклу, большом сопротивлении их движению или при заедании механизма стеклоочистителя в очистителе устанавливается термобиметаллический предохранитель многоразового действия.

Две частоты вращения вала электродвигателя достигаются благодаря применению трех щеток для подвода напряжения питания к обмотке якоря. 1-я скорость (малая) обеспечивается подачей напряжения питания на щетку, находящуюся в геометрической нейтрали электродвигателя. Когда напряжение питания подается на щетку, смещенную с геометрической нейтрали, якорь электродвигателя вращается со 2-ой (большей) скоростью. Реле очистителя ветрового стекла. Реле типа 52.3747 предназначено для создания прерывистого режима работы очистителя ветрового стекла. Реле устанавливается в монтажном блоке и состоит из электронной управляющей схемы и исполнительного электромагнитного реле.

Реле обеспечивает включение очистителя примерно 14 раз в минуту. Кроме того, при включении омыва ветрового стекла реле включает 1-ю скорость очистителя, если он был выключен или работал в прерывистом режиме. После выключения омыва ветрового стекла реле задерживает отключение очистителя до тех пор, пока тот не выполнит еще 2-4 полных цикла.

Система зажигания

Система зажигания двигателя электронная бесконтактная. Бесконтактный датчик в датчике распределителе зажигания построен на использовании эффекта Холла, коррекция угла опережения зажигания механическая, за счет центробежного и вакуумного регуляторов. Электронная система зажигания повышает стабильность работы двигателя на малых оборотах и улучшает его экономичность. Система зажигания. В системе зажигания не используются традиционные распределитель и катушка зажигания. Здесь применяется модуль зажигания, состоящий из двух катушек зажигания и управляющей электроники высокой энергии. Система зажигания не имеет подвижных деталей и поэтому не требует обслуживания. Она также не имеет регулировок (в том числе и угла опережения зажигания), так как управление зажиганием осуществляет ЭБУ.

В системе зажигания применяется метод распределения искры, называемый методом "холостой искры". Цилиндры двигателя объединены в пары 1-4 и 2-3 и искрообразование происходит одновременно в двух цилиндрах: в цилиндре, в котором заканчивается такт сжатия (рабочая искра), и в цилиндре, в котором происходит такт выпуска (холостая искра). В связи с постоянным направлением тока в обмотках катушек зажигания ток искрообразования у одной свечи всегда протекает с центрального электрода на боковой, а у второй - с бокового на центральный. Свечи применяются типа А17ДВРМ или AC. R43XLS с зазором между электродами 1,0-1,13 мм.

Управление зажиганием в системе осуществляется с помощью ЭБУ. Датчик положения коленчатого вала подает в ЭБУ опорный сигнал, на основе которого ЭБУ делает расчет последовательности срабатывания катушек в модуле зажигания. Для точного управления зажиганием ЭБУ использует следующую информацию:

- частота вращения коленчатого вала;

- нагрузка двигателя (массовый расход воздуха);

- температура охлаждающей жидкости;

- положение коленчатого вала.

Система улавливания паров бензина применяется в системе впрыска с обратной связью. В системе применен метод улавливания паров угольным адсорбером, установленным в моторном отсеке. На неработающем двигателе пары бензина из топливного бака подаются в адсорбер, где они поглощаются активированным углем. При работающем двигателе адсорбер продувается воздухом, и пары отсасываются к дроссельному патрубку, а затем во впускную трубу для сжигания в ходе рабочего процесса.

ЭБУ управляет продувкой адсорбера, включая электромагнитный клапан, расположенный на крышке ад - сорбера. При подаче на клапан напряжения он открывается, выпуская пары во впускную трубу. Управление клапаном осуществляется методом широтноимпульсной модуляции. Клапан включается и выключается с частотой 16 раз в секунду (16 Гц). Чем выше расход воздуха, тем больше длительность импульсов включения клапана.

ЭБУ включает клапан продувки адсорбера при выполнении всех следующих условий:

- температура охлаждающей жидкости выше 75СС;

- система управления топливоподачей работает в режиме замкнутого цикла (с обратной связью);

- скорость автомобиля превышает 10 км/ч. После включения клапана критерий скорости меняется. Клапан отключится только при снижении скорости до 7 км/ч;

- открытие дроссельной заслонки превышает 4%. Этот фактор в дальнейшем не играет значения, если он не превышает 99%. При полном открытии дроссельной заслонки ЭБУ отключает клапан продувки адсорбера.

Электровентилятор системы охлаждения включается и выключается ЭБУ в зависимости от температуры двигателя, частоты вращения коленчатого вала, работы кондиционера (если он есть на автомобиле) и других факторов. Электровентилятор включается с помощью вспомогательного реле К9, расположенного в монтажном блоке. При работе двигателя электровентилятор включается если температура охлаждающей жидкости превысит 104°С или будет дан запрос на включение кондиционера. Электровентилятор включается после падения температуры охлаждающей жидкости ниже 101°С, после выключения кондиционера или остановки двигателя.

Система зажигания - это совокупность всех приборов и устройств, обеспечивающих появление искры в момент, соответствующий порядку и режиму работы двигателя. Эта система является частью общей системы электрооборудования. Первые двигатели (например, двигатель Даймлера) в качестве системы зажигания имели калильную головку (синоним — калильную трубку). То есть воспламенение рабочей смеси осуществлялось в конце такта сжатия от сильно нагретой камеры, сообщающейся с камерой сгорания. Перед запуском калильную головку надо было разогреть, далее ее температура поддерживалась сгоранием топлива. В настоящее время таким воспламенением обладают часть микродвигателей внутреннего сгорания, используемые в различных моделях (авиа-, авто-, судомодели и тому подобное). Калильное зажигание в данном случае выигрывает своей простотой и непревзойдённой компактностью.

Но по-настоящему на бензиновых моторах прижилась искровая система зажигания, то есть система, отличительным признаком которой является воспламенение смеси электрическим разрядом, пробивающей воздушный промежуток свечи зажигания.

Было создано большое количество систем зажигания. Все основные типы таких систем можно встретить и в настоящее время.

Одной из первых появилась система зажигания на основе магнето. Идея такой системы — генерация импульса зажигания при прохождении рядом с неподвижной катушкой магнитного поля постоянного магнита, связанного с вращающейся деталью двигателя. Достоинством такой конструкции является простота, отсутствие каких-либо батарей. Такая система всегда готова к работе. Применяют её в данное время более всего на силовой продукции — например, на бензопилах, газонокосилках, маленьких бензогенераторах и тому подобной технике. Недостатками является дороговизна изготовления (катушка с большим количеством витков весьма тонкого провода, высокие требования к изоляции, качественные мощные магниты), конструктивные сложности с регулированием момента зажигания (необходимо перемещать довольно массивную катушку). Для повышения надёжности нередко применяют конструкции с выносными трансформаторами. В этом случае первично генерируется низковольтный импульс, когда магнит проходит рядом с катушкой. Данная катушка изготавливается из небольшого количества витков более толстого провода, поэтому она проще, дешевле, и компактнее. Далее низковольтный импульс поступает на катушку зажигания, с которой и снимается высоковольтный импульс, идущий уже на свечи зажигания. В такие и подобные им системы зажигания в настоящее время вводят различные электронные компоненты с целью улучшения характеристик и смягчения недостатков, но неизменной остаётся идея генерации импульса с помощью постоянного магнита.

Вторым, наиболее распространённым типом систем зажигания на автомобильных моторах, являются системы с «батарейным», то есть с внешним питанием. В этом случае питание системы осуществляется от внешнего источника электроэнергии. Неотъемлемой частью системы зажигания является катушка зажигания, представляющая собой импульсный трансформатор. Основная функция катушки зажигания — генерация высоковольтного импульса на свече. Долгие десятилетия катушка на двигателе была одна, а для обслуживания нескольких цилиндров применялся высоковольтный распределитель. В последнее время типичным становится катушка на пару цилиндров или на каждый цилиндр. Также существуют системы зажигания автомобильных двигателей с двумя свечами, и, соответственно, двумя катушками на каждый цилиндр. Две свечи на цилиндр применяются исходя из соображений сокращения длины пробега фронта горения в цилиндре, что позволяет немного сдвинуть момент зажигания в раннюю сторону, и получить немного большую отдачу от двигателя. Также повышается надёжность системы. В свою очередь, системы зажигания можно разделить на системы с накоплением энергии в индуктивности, и системы зажигания с накоплением энергии в ёмкости.

Системы с накоплением энергии в индуктивности занимают доминирующее положение на технике. Основная идея — при пропускании тока от внешнего источника через первичную обмотку катушки зажигания катушка запасает энергию в своём магнитном поле, при прекращении этого тока ЭДС самоиндукции генерирует в обмотках катушки мощный импульс, который снимается со вторичной (высоковольтной) обмотки, и подаётся на свечу. Напряжение импульса достигает 20-40 тысяч вольт без нагрузки. Реально, на работающем двигателе напряжение высоковольтной части определяется условиями пробоя искрового промежутка свечи зажигания в конкретном рабочем режиме, и колеблется от 3 до 30 тысяч вольт в типичных случаях. Прерывание тока в обмотке долгие годы осуществлялось обычными механическими контактами, сейчас стандартом стало управление электронными устройствами, где ключевым элементом является мощный полупроводниковый прибор: биполярный или полевой транзистор.

Системы с накоплением энергии в ёмкости (они же «конденсаторные» или «тиристорные») появились в середине 70-х годов в связи с появлением доступной элементной базы и возросшим интересом к роторно-поршневым двигателям. Конструктивно они практически аналогичны описанным выше системам с накоплением энергии в индуктивности, но отличаются тем, что вместо пропускания постоянного тока через первичную обмотку катушки к ней подключается конденсатор, заряженный до высокого напряжения (типично от 100 до 400 вольт). То есть обязательными элементами таких систем являются преобразователь напряжения того или иного типа, чья задача — зарядить накопительный конденсатор, и высоковольтный ключ, подключающий данный конденсатор к катушке. В качестве ключа, как правило, используются тиристоры. Недостатком данных систем является конструктивная сложность, и недостаточная длительность импульса в большинстве конструкций, достоинством — крутой фронт высоковольтного импульса, делающий систему менее чувствительной к забрызгиванию свечей зажигания, характерному для роторно-поршневых двигателей.

Существуют также конструкции, объединяющие оба принципа, и имеющие их достоинства, но, как правило, это любительские или экспериментальные конструкции, отличающиеся высокой сложностью изготовления.

Важнейшим параметром, определяющим работу системы зажигания, является так называемый момент зажигания, то есть время, в которое система поджигает искровым разрядом сжатую рабочую смесь. Определяется момент зажигания как положение коленвала двигателя в момент подачи импульса на свечу относительно верхней мёртвой точки в градусах. Система зажигания автомобиля служит для обеспечения воспламенения рабочей смеси в цилиндрах карбюраторного двигателя в соответствии с порядком их работы На карбюраторных двигателях применяют контактную, контактно-транзисторную и бесконтактную системы зажигания.

 

Контактная система зажигания состоит из аккумуляторной батареи, генератора, катушки зажигания, прерывателя-распределителя, искровых свечей зажигания, выключателя зажигания, проводов высокого напряжения и проводов низкого напряжения.

Принцип действия контактной системы заключается в следующем. При включенном зажигании и сомкнутых контактах прерывателя ток от аккумуляторной батареи или генератора поступает на первичную обмотку катушки зажигания, в результате чего образуется магнитное поле. Когда контакты прерывателя размыкаются, ток в первичной обмотке исчезает и исчезает вокруг нее магнитное поле. Исчезающий магнитный поток пересекает витки вторичной и первичной обмоток, вызывая возникновение в каждом из витков электродвижущей силы. Так как на вторичной обмотке количество витков, со единенных между собой последовательно, значительное, общее напряжение на концах достигает 20—24 кВ. Электродвижущая сила вторичной об мотки будет тем выше, чем больше скорость исчезновения магнитного потока. От катушки зажигания по проводам высокого напряжения через распределитель ток высокого напряжения поступает к искровым свечам зажигания, вызывая между электродами свечей искровой разряд, который воспламеняет рабочую смесь.

В настоящее время более широко применяют контактно-транзисторную систем; и бесконтактную системы зажигания. Различных бесконтактных систем зажигания существует много. Принципы действия их примерно одинаковы, однако отдельные элементы существенным образом отличаются, например: транзисторное зажигание с индуктивным датчиком; электронное зажигание, управляемое компьютером с комплексом данных; электронное зажигание, управляемое процессорами, и др.

Принцип действия бесконтактной системы зажигания заключается в следующем. При включенном зажигании и вращающемся коленчатом вале двигателя датчик-распределитель выдает импульсы напряжения на коммутатор, который преобразует их в прерывистые импульсы тока в первичной обмотке катушки зажигания. В момент прерывания тока в первичной обмотке индуктируется ток высокого напряжения во вторичной обмотке. Ток высокого напряжения идет от катушки зажигания по проводу через угольный контакт на пластику ротора и затем через клемму крышки распределителя по проводу высокого напряжения, в наконечнике которого установлен помехоподавительный экран, попадает на соответствующую свечу зажигания рабочую смесь в цилиндре и воспламеняет рабочую смесь в цилиндре.

Бесконтактная система зажигания двигателя ВАЗ-2 18 включает датчик-распределитель, свечи зажигания, электронный коммутатор, аккумуляторную батарею, генератор, катушку зажигания, провода низкого напряжения, провода высокого напряжения, монтажный блок, выключатель зажигания, штекерный разъем датчика-распределителя, плюсовую клемму катушки зажигания.

Бесконтактная система зажигания повышает надежность из-за отсутствия подвижных контактов необходимости систематической их регулировки зачистки зазоров, а также повышает надежность пуска и работу при разгонах автомобиля благодаря более высокой энергии электрического разряда, который обеспечивает надежное воспламенение рабочей смеси в цилиндрах двигателя независимо от частоты вращения коленчатого вала. Кроме того, одним из преимуществ бесконтактной системы зажигания является отсутствие влияния вибрации биения ротора-распределителя на равномерность момента искрообразования.

Важным параметром, определяющим работоспособность системы зажигания, является угол опережения зажигания, который индивидуален для двигателей определенной модели и колеблется от О до 10 градусов.

Угол поворота кривошипа коленчатого вала, при котором появляется искра между электродами свёчи зажигания до момента подхода поршня к верхней мер твой точке, называют углом оп зажигания. Сгорание рабочей смеси в цилиндре двигателя должно заканчиваться при повороте кривошипа на 10—15 градусов после верхней мертвой точки, т. е. в начале рабочего хода. Поэтому искровой пробой между электродами должен происходить несколько раньше подхода поршня к верхней мертвой точке.

Когда искра между электродами свечи появляется слишком рано, т. е. при большом угле опережения зажигания, давление газов в цилиндре возрастает до подхода поршня к верхней мертвой точке, что препятствует движению поршня и приводит к уменьшёнию мощности и ЭКОНОМИЧНОСТИ двигателя, к ухудшению его приемлистости. При работе под нагрузкой двигатель перегревается, появляются стуки, а при малой частоте вращения коленчатого вала в режиме холостого хода двигатель работает неустойчиво.

Если зажигание произойдет позже, т. е. при малом угле опережения зажигания, воспламенение рабочей смеси происходит при движении поршня уже после верхней мертвой точки. Давление газов будет намного меньше, чем при нормальном зажигании, что приведет к резкому падению мощности и экономичности двигателя и к перегреву двигателя. Поэтому угол опережения зажигания должен регулироваться автоматически, с учетом скоростного и нагрузочного режима двигателя:

С увеличением частоты вращения коленчатого вала и уменьшением нагрузки на двигатель угол опережения зажигания, должен увеличиваться, а при уменьшении частоты вращения Коленчатого вала и увеличении нагрузки уменьшаться.

Методы облегчения пуска двигателя. Для облегчения пуска двигателя применяют пусковые жидкости типа «Арктика», предпусковые подогреватели, электроподогрев аккумуляторных батарей, свечи накаливания для дизельных двигателей и др.

 



Поделиться:


Последнее изменение этой страницы: 2020-11-23; просмотров: 118; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.129.210.17 (0.029 с.)