Заголовок MPLS и технологии канального уровня 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Заголовок MPLS и технологии канального уровня



 

Формат MPLS заголовка представлен на рис. 16.5.

 

Рисунок 16.5 - Формат MPLS-метки

 

Описание полей MPLS-заголовка:

· Метка (20 бит). Используется для выбора соответствующего пути коммутации по меткам.

· CoS - Класс услуги (Class of Service). Поле CoS, занимающее 3 бита, первоначально было зарезервировано для развития технологии, но в последнее время используется в основном для указания класса трафика, требующего определенного уровня QoS.

· Признак дна стека меток. Этот признак (S) занимает 1 бит. Одному пакету может быть назначено несколько меток ("стек" меток). S - поле-флаг обозначающий то что метка последняя в "стеке". Пример изображён на рис 16.6.

· TTL - time-to-live Время жизни. Это поле, занимающее 8 бит, дублирует аналогичное поле IP-пакета. Это необходимо для того, чтобы устройства LSR могли отбрасывать «заблудившиеся» пакеты только на основании информации, содержащейся в заголовке MPLS, не обращаясь к заголовку IP.

Рисунок 16.6 - Пример назначения стека меток.

 

У последней метки в стеке значение поля "S" равно 1 (на рисунке 16.6 это метка MPLS N1). У остальных меток (метка MPLS N2 и N3) значение поля "S" равно 0. Стек меток используется для реализации дополнительных возможностей сети на базе MPLS, например MPLS/VPN или MPLS/TrafficEnenirring.

Для пояснения механизма взаимодействия MPLS с технологиями канального уровня рассмотрим ситуацию, когда заголовок MPLS включает только одну метку.

Рисунок 16.7 - Форматы заголовков нескольких разновидностей технологии MPLS

 

Как видно из рисунка 16.7, технология MPLS поддерживает несколько типов кадров: РРР, Ethernet, Frame Relay и ATM. Это не означает, что под слоем MPLS работает какая-либо из перечисленных технологий, например Ethernet. Это означает только то, что в технологии MPLS используются форматы кадров этих технологий для помещения в них пакета сетевого уровня, которым сегодня почти всегда является IP-пакет.

В связи с тем, что заголовок MPLS помещается между заголовком канального уровня и заголовком IP, его называют заголовком-вставкой (shim header).

Продвижение кадра в MPLS-сети происходит на основе метки MPLS и техники LSP, а не на основе адресной информации и техники той технологии, формат кадра которой MPLS использует. Таким образом, если в MPLS применяется кадр Ethernet, то МАС-адреса источника и приемника хотя и присутствуют в соответствующих полях кадра Ethernet, но для продвижения кадров не используются. Исключение составляет случай, когда между двумя соседними устройствами LSR находится сеть коммутаторов Ethernet — тогда МАС-адрес назначения MPLS-кадра потребуется для того, чтобы кадр дошел до следующего устройства LSR, а уже оно будет продвигать его на основании метки.

В кадрах РРР, Ethernet и Frame Relay заголовок MPLS помещается между оригинальным заголовком и заголовком пакета 3-го уровня. С ячейками ATM технология MPLS поступает по-другому: она пользуется имеющимися полями VPI/VCI в заголовках этих ячеек для меток виртуальных соединений. Поля VPI/VCI нужны только для хранения поля метки, остальная часть заголовка MPLS с полями CoS, S и TTL размещается в поле данных ATM-ячеек и при передаче ячеек ATM-коммутаторами, поддерживающими технологию MPLS, не используется.

Далее для определенности при рассмотрении примеров мы будем подразумевать, что используется формат кадров MPLS/PPP.

 

Стек меток

 

Наличие стека меток является одним из оригинальных свойств MPLS. Концепция стека меток является развитием концепции двухуровневой адресации виртуальных путей с помощью меток VPI/VCI, принятой в ATM.

Стек меток позволяет создавать систему агрегированных путей LSP с любым количеством уровней иерархии. Для поддержки этой функции MPLS-кадр, который перемещается вдоль иерархически организованного пути, должен включать столько заголовков MPLS, сколько уровней иерархии имеет путь. Напомним, что заголовок MPLS каждого уровня имеет собственный набор полей: метка, CoS, TTL и S. Последовательность заголовков организована как стек, так что всегда имеется метка, находящаяся на вершине стека, и метка, находящаяся на дне стека, при этом последняя сопровождается признаком S = 1. Над метками выполняются следующие операции, задаваемые в поле действий таблицы продвижения:

· Push — поместить метку в стек. В случае пустого стека эта операция означает простое присвоение метки пакету. Если же в стеке уже имеются метки, в результате этой операции новая метка сдвигает «старые» в глубь стека, сама оказываясь на вершине.

· Swap — заменить текущую метку новой.

· Pop — выталкивание (удаление) верхней метки, в результате все остальные метки стека поднимаются на один уровень.

Продвижение MPLS-кадра всегда происходит на основе метки, находящейся в данный момент на вершине стека. Рассмотрим сначала продвижение MPLS-кадра по одноуровневому пути в MPLS-сети, показанной на рис. 16.8.

Сеть состоит из трех MPLS-доменов. На рисунке показаны путь LSP1 в домене 1 и путь LSP2 в домене 2. LSP1 соединяет устройства LER1 и LER2, проходя через устройства LSR1, LSR2 и LSR3. Пусть начальной меткой пути LSP1 является метка 256, которая была присвоена пакету пограничным устройством LER1. На основании этой метки пакет поступает на устройство LSR1, которое по своей таблице продвижения определяет новое значение метки пакета (272) и переправляет его на вход LSR2. Устройство LSR2, действуя аналогично, присваивает пакету новое значение метки (132) и передает его на вход LSR3. Устройство LSR3, будучи предпоследним устройством в пути LSP1, выполняет операцию Pop и удаляет метку из стека. Устройство LER2 продвигает пакет уже на основании IP-адреса.

Рисунок 16.8 - Пути LSP1 и LSP2, проложенные в доменах 1 и 2 MPLS-сети

 

На рисунке 16.8 также показан путь LSP2 в домене 2. Он соединяет устройства LER3 и LER4, проходя через устройства LSR4, LSR5 и LSR6, и определяется последовательностью меток 188,112,101.

Для того чтобы IP-пакеты могли передаваться на основе техники MPLS не только внутри каждого домена, но и между доменами (например, между устройствами LER1 и LER4), существует два принципиально разных решения.

· Первое решение состоит в том, что между LER1 и LER4 устанавливается один одноуровневый путь коммутации по меткам, соединяющий пути LSP1 и LSP2 (которые в этом случае становятся одним путем). Это простое, на первый взгляд, решение, называемое сшиванием путей LSP, плохо работает в том случае, когда MPLS-домены принадлежат разным поставщикам услуг, не позволяя им действовать независимо друг от друга.

· Вторым более перспективным решением является применение многоуровневого подхода к соединению двух MPLS-доменов, принадлежащих, возможно, разным поставщикам услуг.

Для реализации второго подхода в нашем примере нужно создать путь коммутации по меткам второго уровня (LSP3), соединяющий устройства LER1 и LER4. Этот путь определяет последовательность хопов между доменами а не между внутренними устройствами LSR каждого домена. Так, LSP3 состоит из хопов LER1 — LER2 — LER3 — LER4. В этом отношении многоуровневый подход MPLS концептуально очень близок подходу протокола BGP, определяющего путь между автономными системами.

Рассмотри более детально, как работает технология MPLS в случае путей коммутации по меткам двух уровней (рис 16.9).

В устройстве LER1 начинаются два пути — LSP1 и LSP3, что обеспечивается соответствующей записью в таблице продвижения устройства LER1 (табл. 16.3).

 

Таблица 16.3 - Запись в таблице продвижения LER1

Входной интерфейс Метка Следующий хоп Действия
... ... ... ...
S0 ... S1 315 Push 256
... ... ... ...

 

IP-пакеты, поступающие на интерфейс S0 устройства LER1, продвигаются на его выходной интерфейс S1, где для них создается заголовок MPLS, включающий метку 315 верхнего уровня (LSP3), которая на этот момент является верхушкой стека меток. Затем эта метка проталкивается на дно стека (операция Push), а верхней становится метка 256, относящаяся к LSP1.

Далее MPLS-кадр с меткой 256 поступает на выходной интерфейс S1 пограничного устройства LER1 и передается на вход LSR1. Устройство LSR1 обрабатывает кадр в соответствии со своей таблицей продвижения (табл. 16.4). Метка 256, находящаяся на вершине стека, заменяется меткой 272. (Отметьте, что метка 315, находящаяся ниже в стеке, устройством LSR1 игнорируется.)

 

 

Рисунок 16.9 - Использование стека меток иерархией путей

 

Таблица 16.4 -  Запись в таблице продвижения LSR1

Входной интерфейс Метка Следующий хоп Действия
... ... ... ...
S0 256 S1 272
... ... ... ...

 

Аналогичные действия выполняет устройство LSR2, которое заменяет метку меткой 132 и отправляет кадр следующему по пути устройству LSRЗ (табл. 16.5).

 

Таблица 16.5 -  Запись в таблице продвижения LSR3

Входной интерфейс Метка Следующий хоп Действия
... ... ... ...
S0 132 S1 Pop
... ... ... ...

 

Работа устройства LSR3 несколько отличается от работы устройств LSR1 и LSR2, так как оно является предпоследним устройством LSR для пути LSP1. В соответствии с записью в табл. 2 устройство LSR3 выполняет выталкивание (Pop) из стека метки 132, относящейся к пути LSP1, выполняя операцию PHP. В результате верхней меткой стека становится метка 315, принадлежащая пути LSP3.

Устройство LER2 продвигает поступивший на его входной интерфейс S0 кадр на основе своей записи таблицы продвижения (табл. 16.6). Устройство LER2 сначала заменяет метку 315 пути LSP3 значением 317, затем проталкивает ее на дно стека и помещает на вершину стека метку 188, которая является меткой пути LSP2, внутреннего для домена 2. Перемещение кадра вдоль пути LSP2 происходит аналогичным образом.

 

Таблица 16.6 -  Запись в таблице продвижения LER2

Входной интерфейс Метка Следующий хоп Действия
... ... ... ...
S0 315 S1 317 Push 188
... ... ... ...

 

Описанная модель двухуровневого пути легко может быть расширена для любого количества уровней.

 

Протокол LDP

 

Протокол распределения меток (Label Distribution Protocol, LDP) позволяет автоматически создавать в сети пути LSP в соответствии с существующими в таблицах маршрутизации записях о маршрутах в IP-сети. Протокол LDP принимает во внимание только те записи таблицы маршрутизации, которые созданы с помощью внутренних протоколов маршрутизации, то есть протоколов типа IGP, поэтому режим автоматического создания LSP с помощью протокола LDP иногда называют режимом MPLS IGP (в отличие от режима MPLS ТЕ, когда маршруты выбираются из соображений инжиниринга трафика и не совпадают с маршрутами, выбранными внутренними протоколами маршрутизации). Еще режим MPLS IGP называют ускоренной MPLS-коммутацией, это название отражает начальную цель разработчиков технологии MPLS, которая состояла только в ускорении продвижения IP-пакетов с помощью техники виртуальных каналов. Спецификация LDP дается в RFC 5036 (http://www.rfc-editor.org/rfc/rfc5036.txt). Рассмотрим работу протокола LDP на примере сети, изображенной на рис. 16.10.

Все устройства LSR поддерживают сигнальный протокол распределения меток (LDP). От устройства LSR1 в сети уже установлен один путь LSP1 — по этому пути идет трафик к сетям 105.0.0.0 и 192.201.103.0. Это значит, что таблица FTN (отображающая сети назначения на LSP) у LSR1 соответствует табл. 16.7.

 

Таблица 16.7 - Таблица FTN устройства LSR1

Признаки FEC Метка
105.0.0.0; 192.201.103.0 231

 

Метка 231 в этой таблице соответствует пути LSP1.

 

Рисунок 16.10 - MPLS-сеть с устройствами LSR, поддерживающими LDP

 

Мы рассмотрим функционирование протокола LDP в ситуации, когда в результате работы протоколов маршрутизации или же после ручной модификации администратором сети в таблице маршрутизации устройства LSR1 появилась запись о новой сети назначения, для которой в сети поставщика услуг еще не проложен путь коммутации по меткам. В нашем случае это сеть 132.100.0.0 и для нее нет записи в таблице FTN.

В этом случае устройство-LSR1 автоматически инициирует процедуру прокладки нового пути. Для этого оно запрашивает по протоколу LDP метку для новой сети 132.100.0.0 у маршрутизатора, IP-адрес которого в таблице маршрутизации указан для данной сети как адрес следующего хопа.

Однако для того чтобы воспользоваться протоколом LDP, нужно сначала установить между устройствами LSR сеанс LDP, так как этот протокол работает в режиме установления соединений.

Сеансы LDP устанавливаются между соседними маршрутизаторами автоматически. Для этого каждое устройство LSR, на котором развернут протокол LDP, начинает посылать своим соседям сообщения Hello. Эти сообщения посылают по групповому IP-адресу 224.0.0.2, который адресуется ко всем маршрутизаторам подсети и определенному порту UDP. Если соседний маршрутизатор также поддерживает протокол LDP, то он в ответ устанавливает сеанс TCP через порт 646 (этот порт закреплен за протоколом LDP).

В результате обмена сообщениями Hello все поддерживающие протокол LDP устройства LSR обнаруживают своих соседей и устанавливают с ними сеансы, как показано на рис. 16.11  (для простоты на рисунке представлены не все сеансы LDP, существующие в сети).

Рисунок 16.11  - Сеансы LDP устанавливаются между непосредственными соседями

 

Будем считать, что между устройствами LSR1 и LSR2 установлен сеанс LDP.

Тогда при обнаружении новой записи в таблице маршрутизации, указывающей на устройство LSR2 в качестве следующего хопа, устройство LSR1 просит устройство LSR2 назначить метку для нового пути к сети 132.100.0.0. Говорят, что устройство LSR2 находится ниже по потоку (downstream) для устройства LSR1 относительно пути к сети 132.100.0.0. Соответственно устройство LSR1 расположено выше по потоку для устройства LSR2 относительно сети 132.100.0.0. Естественно, что для других сетей назначения у устройства LSR1 имеются другие соседи вниз по потоку, а у устройства LSR2 — другие соседи вверх по потоку.

Причина, по которой значение метки для нового пути выбирается соседом ниже по потоку, понятна — эта метка, которая имеет локальное значение на двухточечном соединении между соседними устройствами, будет использоваться именно этим устройством для того, чтобы понимать, к какому пути LSP относится пришедший MPLS-кадр. Поэтому устройство ниже по потоку выбирает уникальное значение метки, исходя из неиспользованных значений меток для своего интерфейса, который связывает его с соседом выше по потоку.

Для получения значения метки устройство LSR1 выполняет запрос метки протокола LDP. Формат такого запроса достаточно прост (рис 16.12).

 

Рисунок 16.12 - Формат LDP-запроса метки

 

Идентификатор сообщения требуется для того, чтобы при получении ответа можно было однозначно сопоставить ответ некоторому запросу (устройство может послать несколько запросов до получения ответов на каждый из них).

В нашем примере в качестве элемента FEC будет указан адрес 132.100.0.0.

Устройство LSR2, приняв запрос, находит, что у него также нет проложенного пути к сети 132.100.0.0, поэтому оно передает LDP-запрос следующему устройству LSR, адрес которого указан в его таблице маршрутизации в качестве следующего хопа для сети 132.100.0.0. В примере, показанном на рис. 2, таким устройством является LSR3, на котором путь коммутации по меткам должен закончиться, так как следующий хоп ведет за пределы MPLS-сети данного оператора.

Устройство LSRЗ, обнаружив, что для пути к сети 132.100.0.0 оно является пограничным, назначает для прокладываемого пути метку, еще не занятую его входным интерфейсом, и сообщает об этой метке устройству LSR2 в LDP-cooбщeнии, формат которого представлен на рис 16.13. Пусть это будет метка 231.

 

Рисунок 16.13 - Формат отображения метки на элемент FEC протокола LDP

 

В свою очередь, LSR2 назначает неиспользуемую его интерфейсом метку и сообщает об этом в LDР-сообщении отображения метки устройству LSR1. После этого новый путь коммутации по меткам, ведущий от LSR1 к сети 132.100.0.0, считается проложенным (рис. 16.14), и вдоль него пакеты начинают передаваться уже на основе меток и таблиц продвижения, а не 1Р-адресов и таблиц маршрутизации.

Рисунок 16.14 - Новый путь LSP2

 

Было бы нерационально прокладывать отдельный путь для каждой сети назначения каждого маршрутизатора. Поэтому устройства LSR стараются строить агрегированные пути коммутации по меткам и передавать вдоль них пакеты, следующие к некоторому набору сетей. Так, на рис. 5 устройство LSR1 передает по пути LSP1 пакеты, следующие не только к сети 132.100.0.0, но и к сетям 194.15.17.0 и 201.25.10.0, информация о которых появилась уже после того, как путь LSP2 был проложен.

Мы рассмотрели только один режим работы протокола LDP, который носит сложное название «Упорядоченный режим управления распределением меток с запросом устройства вниз по потоку». Здесь под упорядоченным режимом понимается такой режим, когда некоторое промежуточное устройство LSR не передает метку для нового пути устройству LSR, лежащему выше по потоку, до тех пор, пока не получит метку для этого пути от устройства LSR, лежащего ниже по потоку. В нашем случае устройство LSR2 ждало получения метки от LSR3 и уже потом передало метку устройству LSR1.

Существует и другой режим управления распределением меток, который называется независимым. При независимом управлении распределением меток LSR может назначить и передать метку, не дожидаясь прихода сообщения от своего соседа, лежащего ниже по потоку. Например, устройство LSR2 могло бы назначить и передать метку 199 устройству LSR1, не дожидаясь прихода метки 231 от устройства LSR3. Так как метки имеют локальное значение, результат изменения режима не изменился бы.

Существует также два метода распределения меток — распределение от лежащего ниже по потоку по запросу и без запроса. Для нашего случая это значит, что если бы устройство LSR2 обнаружило в своей таблице маршрутизации запись о новой сети 132.100.0.0, оно могло бы назначить метку новому пути и передать ее устройству LSR1 без запроса. Так как при этом устройство LSR2 не знает своего соседа выше по потоку (таблица маршрутизации не говорит об этом), оно передает эту информацию всем своим соседям по сеансам LDP. В этом варианте работы протокола LDP устройства LSR могут получать альтернативные метки для пути к некоторой сети; а выбор наилучшего пути осуществляется обычным для IP-маршрутизатров (которыми устройства LSR являются по совместительству) способом — на основании наилучшей метрики, выбираемой протоколом маршрутизации.

Как видно из описания, существует два независимых параметра, которые определяют вариант работы протокола LDP: режим управления распределением меток и метод распределения меток. Так как каждый параметр имеет два значения, всего существует четыре режима работы протокола LDP.

В рамках одного сеанса LDP должен поддерживаться только один из методов распределения меток — по запросу или без запроса. В то же время в масштабах сети могут одновременно использоваться оба метода. Протокол LDP чаще всего работает в режиме независимого управления распределением меток без запроса.

Упорядоченное управление распределением меток требуется при прокладке путей LSP, необходимых для инжиниринга трафика.

 

Инжиниринг трафика в MPLS

 

Технология MPLS поддерживает технику инжиниринга трафика. В этом случае используются модифицированные протоколы сигнализации и маршрутизации, имеющие приставку ТЕ (Traffic Engineering — инжиниринг трафика). В целом такой вариант MPLS получил название MPLS ТЕ.

В технологии MPLS ТЕ пути LSP называют ТЕ-туннелями. ТЕ-туннели не прокладываются распределенным способом вдоль путей, находимых обычными протоколами маршрутизации независимо в каждом отдельном устройстве LSR. Вместо этого ТЕ-туннели прокладываются в соответствии с техникой маршрутизации от источника, когда централизованно задаются промежуточные узлы маршрута. В этом отношении ТЕ-туннели подобны PVC-каналам в технологиях ATM и Frame Relay. Инициатором задания маршрута для ТЕ-туннеля выступает начальный узел туннеля, а рассчитываться такой маршрут может как этим же начальным узлом, так и внешней по отношению к сети программной системой или администратором.

MPLS ТЕ поддерживает туннели двух типов:

· строгий ТЕ-туннель определяет все промежуточные узлы между двумя пограничными устройствами;

· свободный ТЕ-туннель определяет только часть промежуточных узлов от одного пограничного устройства до другого, а остальные промежуточные узлы выбираются устройством LSR самостоятельно.

На рис. 16.15 показаны оба типа туннелей.

Рисунок 16.15  - Два типа ТЕ-туннелей в технологии MPLS

 

Туннель 1 является примером строгого туннеля, при его задании внешняя система (или администратор сети) указала как начальный и конечный узлы туннеля, так и все промежуточные узлы, то есть последовательность IP-адресов для устройств LER1, LSR1, LSR2, LSR3, LER3. Таким образом, внешняя система решила задачу инжиниринга трафика, выбрав путь с достаточной неиспользуемой пропускной способностью. При установлении туннеля 1 задается не только последовательность LSR, но и требуемая пропускная способность пути. Несмотря на то, что выбор пути происходит в автономном режиме, все устройства сети вдоль туннеля 1 проверяют, действительно ли они обладают запрошенной неиспользуемой пропускной способностью, и только в случае положительного ответа туннель прокладывается.

При прокладке туннеля 2 (свободного) администратор задает только начальный и конечный узлы туннеля, то есть устройства LER5 и LER2. Промежуточные устройства LSR4 и LSR2 находятся автоматически начальным узлом туннеля 2, то есть устройством LER5, а затем с помощью сигнального протокола устройство LER5 сообщает этим и конечному устройствам о необходимости прокладки туннеля.

Независимо от типа туннеля он всегда обладает таким параметром, как резервируемая пропускная способность. В нашем примере туннель 1 резервирует для трафика 10 Мбит/с, а туннель 2 — 36 Мбит/с. Эти значения определяются администратором, и технология MPLS ТЕ никак не влияет на их выбор, она только реализует запрошенное резервирование. Чаще всего администратор оценивает резервируемую для туннеля пропускную способность на основании измерений трафика в сети, тенденций изменения трафика, а также собственной интуиции. Некоторые реализации MPLS ТЕ позволяют затем автоматически корректировать величину зарезервированной пропускной способности на основании автоматических измерений реальной интенсивности трафика, проходящего через туннель.

Однако сама по себе прокладка в MPLS-сети ТЕ-туннеля еще не означает передачи по нему трафика. Она означает только то, что в сети действительно существует возможность передачи трафика по туннелю со средней скоростью, не превышающей зарезервированное значение. Для того чтобы данные были переданы по туннелю, администратору предстоит еще одна ручная процедура — задание для начального устройства туннеля условий, определяющих, какие именно пакеты должны передаваться по туннелю. Условия могут быть чрезвычайно разнообразными, так, в качестве признаков агрегированного потока, который должен передаваться по туннелю, могут выступать все традиционные признаки: IP-адрес назначения и источника, тип протокола, номера TCP- и UDP-портов, номер интерфейса входящего трафика, значения приоритета в протоколах DSCP и IP и т. д.

Таким образом, устройство LER должно сначала провести классификацию трафика, затем выполнить профилирование, удостоверившись, что средняя скорость потока не превышает зарезервированную, и наконец, начать маркировать пакеты, используя начальную метку ТЕ-туннеля, чтобы передавать трафик через сеть с помощью техники MPLS. В этом случае расчеты, выполненные на этапе выбора пути для туннеля, дадут нужный результат — баланс ресурсов сети при соблюдении средней скорости для каждого потока.

Однако мы еще не рассмотрели специфический набор протоколов, которые устройства LER и LSR сети используют для прокладки свободных туннелей или проверки работоспособности созданных администратором строгих туннелей.

Для выбора и проверки путей через туннели в технологи MPLS ТЕ используются расширения протоколов маршрутизации, работающих на основе алгоритма состояния связей. Сегодня такие расширения стандартизованы для протоколов OSPF и IS-IS. Для решения задачи ТЕ в протоколы OSPF и IS-IS включены новые типы объявлений, обеспечивающие распространение по сети информации о номинальной и незарезервированной (доступной для ТЕ-потоков) величинах пропускной способности каждой связи. Таким образом, ребра результирующего графа сети, создаваемого в топологической базе каждого устройства LER или LSR, маркируются этими двумя дополнительными параметрами. Располагая таким графом, а также параметрами потоков, для которых нужно определить ТЕ-пути, устройство LER может найти рациональное решение. Чаще всего решение ищется по наиболее простому критерию, который состоит в минимизации максимального значения коэффициента использования вдоль выбранного пути, то есть критерием оптимизации пути является значение min (max Ki) для всех возможных путей.

В общем случае администратору необходимо проложить несколько туннелей для различных агрегированных потоков. С целью упрощения задачи оптимизации выбор путей для этих туннелей обычно осуществляется по очереди, причем администратор определяет очередность на основе своей интуиции. Очевидно, что поиск ТЕ-путей по очереди снижает качество решения — при одновременном рассмотрении всех потоков в принципе можно было бы добиваться более рациональной загрузки ресурсов.

ПРИМЕР

В примере, показанном на рис. 16.16, ограничением является максимально допустимое значение коэффициента использования ресурсов, равное 0,65. В варианте 1 решение было найдено при очередности рассмотрения потоков 1, 2, 3. Для первого потока был выбран путь А-В-С, так как в этом случае он, с одной стороны, удовлетворяет ограничению (все ресурсы вдоль пути — каналы А-В, А-С и соответствующие интерфейсы маршрутизаторов оказываются загруженными на 50/155 = 0,32), а с другой – обладает минимальной метрикой (65 + 65 = 130). Для второго потока также был выбран путь А-В-С, так как и в этом случае ограничение удовлетворяется – результирующий коэффициент использования оказывается равным (50 + 40)/155 = 0,58. Третий поток направляется по пути A-D-E-C и загружает ресурсы каналов A-D, D-E и Е-С на 0,3. Решение 1 можно назвать удовлетворительным, так как коэффициент использования любого ресурса в сети не превышает 0,58.

Рисунок 16.16 - Зависимость качества решения задачи ТЕ от очередности выбора туннелей

 

Однако существует лучший способ, представленный в варианте 2. Здесь потоки 2 и 3 были направлены по верхнему пути A-ß-C, а поток 1 по нижнему пути A-D-E-C. Ресурсы верхнего пути оказываются загруженными на 0,45, а нижнего на 0,5, то есть налицо более равномерная загрузка ресурсов, а максимальный коэффициент использования всех ресурсов сети не превышает 0,5. Этот вариант может быть получен при одновременном рассмотрении всех трех потоков с учетом ограничения min (max Ki) или же при рассмотрении потоков по очереди в последовательности 2,3,1.

Несмотря на не оптимальность качества решения, в производимом сегодня оборудовании применяется вариант технологии MPLS ТЕ с последовательным рассмотрением потоков. Он проще в реализации и ближе к стандартным для протоколов OSPF и IS-IS процедурам нахождения кратчайшего пути для одной сети назначения (в отсутствие ограничений найденное решение для набора кратчайших путей не зависит от последовательности учета сетей, для которых производился поиск). Кроме того, при изменении ситуации появлении новых потоков или изменении интенсивности существующих найти путь удается только для одного потока.

Возможен также подход, в котором внешняя по отношению к сети вычислительная система, работающая в автономном режиме, определяет оптимальное решение для набора потоков. Это может быть достаточно сложная система, которая включает подсистему имитационного моделирования, способную учесть не только средние интенсивности потоков, но и их пульсации и оценить не только загрузку ресурсов, но и результирующие параметры QoS  задержки, потери и т. п. После нахождения оптимального решения его можно модифицировать уже в оперативном режиме поочередного поиска путей.

В технологии MPLS ТЕ информация о найденном рациональном пути используется полностью, то есть запоминаются IP-адреса источника, всех транзитных маршрутизаторов и конечного узла. Поэтому достаточно, чтобы поиском путей занимались только пограничные устройства сети (LER), а промежуточные устройства (LSR) лишь поставляли им информацию о текущем состоянии резервирования пропускной способности каналов.

После нахождения пути независимо от того, найден он был устройством LER или администратором, его необходимо зафиксировать. Для этого в MPLS ТЕ используется расширение протокола резервирования ресурсов (RSVP), который часто в этом случае называют протоколом RSVP ТЕ. Сообщения RSVP ТЕ передаются от одного устройства LSR другому в соответствии с данными о найденных IP-адресах маршрута. При установлении нового пути в сигнальном сообщении наряду с последовательностью адресов пути указывается также и резервируемая пропускная способность. Каждое устройство LSR, получив такое сообщение, вычитает запрашиваемую пропускную способность из пула свободной пропускной способности соответствующего интерфейса, а затем объявляет остаток в сообщениях протокола маршрутизации, например OSPF.

В заключение рассмотрим вопрос отношения технологий MPLS ТЕ и QoS. Как видно из описания, основной целью MPLS ТЕ является использование возможностей MPLS для достижения внутренней цели поставщика услуг, а именно сбалансированной загрузки всех ресурсов своей сети. Однако при этом также создается основа для предоставления транспортных услуг с гарантированными параметрами QoS, так как трафик по ТЕ-туннелям передается при соблюдении некоторого максимального уровня коэффициента использования ресурсов. Коэффициент использования ресурсов оказывает решающее влияние на процесс образования очереди, так что потоки, передаваемые по ТЕ-туннелям, передаются с некоторым гарантированным уровнем QoS.

Для того чтобы обеспечить разные параметры QoS для разных классов трафика, поставщику услуг необходимо для каждого класса трафика установить в сети отдельную систему туннелей. При этом для чувствительного к задержкам класса трафика требуется выполнить резервирование таким образом, чтобы максимальный коэффициент использования ресурсов туннеля находился в диапазоне 0,2-0,3, иначе задержки пакетов и их вариации выйдут за допустимые пределы.

 


Лекция №17



Поделиться:


Последнее изменение этой страницы: 2020-11-23; просмотров: 380; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.225.57.49 (0.091 с.)